Home Blog Pagina 118

Circolo Astrofili Veronesi

0

14.03: “L’astronomia in rete” di Raffaele Belligoli.

Per informazioni: info@astrofiliveronesi.it
Cell: 334 7313710 (Antonio Cagnoli)
www.astrofiliveronesi.it

Associazione Ligure Astrofili Polaris

0

14.03: ”I satelliti medicei” di Fabio Quarato.

Per info: cell. 346.2402066 – info@astropolaris.it
www.astropolaris.it

Permette una domanda? – approfondimenti sul quesito e soluzione

Cavalieri e furfanti

Nella rubrica Moebius di Coelum 177 ho raccontato un sogno. Mi trovavo su un’astronave, in procinto di atterrare su un pianeta misterioso. Il pilota, che proveniva da un lontano sistema solare, mi spiegò che gli abitanti del mondo che dovevamo raggiungere erano tutti bugiardi, senza eccezione. Precisò poi che, tra gli otto pianeti del sistema solare, alcuni (i cosiddetti pianeti neri) sono proprio così, cioè abitati da bugiardi, mentre gli altri (i pianeti bianchi) sono popolati unicamente da persone sincere.

E quando si parla di sinceri e bugiardi, s’intende una cosa netta: un sincero dice sempre e soltanto cose vere, e un bugiardo afferma esclusivamente e costantemente il falso.

Dopo una fugace visita al pianeta, ci ritrovammo sull’astronave, e il comandante mi pose due enigmi: se non li avessi risolti entrambi, sarei stato ucciso.

I problemi erano i seguenti:

  • > Un preziosissimo tesoro è conservato in uno degli otto pianeti, e per determinare quale fosse questo pianeta potevo soltanto porre tre domande (la cui risposta poteva essere soltanto sì o no). Su ogni pianeta era pronto a rispondere un rappresentante della popolazione, e io dovevo scegliere a quali di questi delegati rivolgere ogni domanda.
  • > Sul pianeta del tesoro vi erano due cavità, una delle quali conteneva l’incalcolabile fortuna. Un indigeno svolgeva la funzione di custode del prezioso scrigno, coadiuvato nalla sua funzione da un forestiero. L’unico indizio che avevo per capire a chi dovevo domandare la posizione del tesoro era una frase del forestiero: “Io e il mio capo proveniamo da due pianeti dello stesso colore”.
Raymond Smullyan

L’enigma proposto s’inquadra, più o meno, in un filone di problemi di logica inventati dal geniale e poliedrico Raymond Smullyan. Nato a New York nel 1919, Smullyan è uno dei logici più famosi del nostro tempo, nonché un brillante inventore di giochi e rompicapi. Si occupa anche di musica (è un valente pianista), di prestidigitazione e di filosofia.

L’ambientazione tipica degli indovinelli di Smullyan è un’isola immaginaria abitata esclusivamente da “cavalieri”, cioè persone sempre sincere, e da “furfanti”, che sono solo capaci di mentire. Di solito il racconto prevede che un visitatore sbarchi sull’isola e s’imbatta in alcuni suoi abitanti: dalle loro affermazioni deve capire se si tratti di cavalieri o furfanti, e ricavare altre informazioni.

Ecco un esempio classico di questo tipo di indovinelli: il visitatore incontra due abitanti dell’isola, Alice e Bob. La prima afferma che sia lei che Bob sono furfanti. Si tratta di capire se i due sono sinceri o bugiardi. Ebbene, per scoprirlo basta un piccolo ragionamento. Supponiamo che l’affermazione di Alice sia vera, cioè che Alice sia una furfante: ma se è così, non può mai dire cose vere, quindi dobbiamo scartare questa ipotesi. Ne consegue che la frase è falsa, cioè non è vero che sia Alice che Bob sono furfanti. D’altra parte Alice non può essere un cavaliere, perché se così fosse non avrebbe affermato il falso. Quindi l’unica possibilità è che Alice sia una furfante e Bob un cavaliere.

Il pianeta del tesoro

Torniamo al nostro enigma di gennaio. Anche questo, come quello di dicembre sul “Palomar Cube”, non era di immediata soluzione. Ma come nel caso precedente non occorrevano particolari conoscenze logiche o matematiche per risolverlo: bastava un po’ di ragionamento logico e un pizzico di pazienza.

Vediamo come poteva essere risolto il problema, iniziando dal primo quesito, quello della determinazione del pianeta del tesoro. I pianeti possibili sono 8, da Mercurio a Nettuno, e le domande a disposizione sono 3, per ciascuna delle quali vi sono 2 possibili risposte (sì o no). Non a caso, 2 elevato alla 3 è proprio uguale a 8. La serie di domande deve essere quindi organizzata in modo che a ogni risposta il numero di pianeti candidati si dimezzi: dopo la prima risposta avremo 4 pianeti ancora in lizza, dopo la seconda risposta questi si saranno ridotti a 2, e finalmente la terza risposta ci fornirà l’indicazione risolutiva.

Il grosso guaio è che quando rivolgiamo una domanda al rappresentante di un pianeta, non possiamo sapere a priori se quel pianeta sia bianco o nero, cioè se il nostro interlocutore sia sincero o bugiardo. Come fare, allora?

Il trucco consiste nel formulare le domande in un modo un po’ particolare. Supponiamo che io chieda di parlare con il rappresentante di un pianeta qualsiasi, diciamo Giove, e gli rivolga la seguente domanda:

«Se tu fossi il rappresentante di un pianeta di colore opposto al tuo, e ti venisse rivolta la domanda “Il pianeta col tesoro è uno dei primi quattro del sistema solare?”, come risponderesti?»

Fateci caso: indipendentemente dal fatto che il nostro interlocutore gioviano sia sincero o no, la sua risposta sarà, per così dire, la combinazione tra la risposta di un sincero e quella di un mentitore, per cui sarà sicuramente il contrario della verità.

Vediamo la cosa più in dettaglio: se Giove è pianeta di galantuomini, il nostro interlocutore è sincero. Ma noi gli chiediamo di immaginare di essere un bugiardo! Quindi, da sincero qual è, il gioviano ci risponderà, candidamente, come farebbe un bugiardo, e noi dovremo assumere come vera la risposta opposta alla sua. Se, ad esempio, lui rispondesse “Sì”, saremmo certi che il tesoro si trova in uno nei pianeti esterni del sistema solare.

Una formulazione leggermente diversa della domanda è la seguente:

«Se tu rivolgessi al rappresentante di un pianeta di colore opposto al tuo la domanda “Il pianeta col tesoro è uno dei primi quattro del sistema solare?”, come risponderebbe?»

Anche in questo caso la risposta risulterà dalla concatenazione tra la risposta di un sincero e quella di un mentitore, e dovremo considerare l’opposto per arrivare alla verità.

Invece, consideriamo la seguente formulazione alternativa:

«Se tu chiedessi a un tuo concittadino: “Il pianeta col tesoro è uno dei primi quattro del sistema solare?”, lui come risponderebbe?»

Questa volta vengono combinate insieme le risposte fornite da abitanti dello stesso pianeta, quindi entrambi sinceri o entrambi bugiardi. Nel primo caso la risposta sarà evidentemente sincera. Nel secondo la risposta sarà l’opposto dell’opposto della verità, quindi ancora sincera. In definitiva, a differenza delle due precedenti, questa nuova formulazione fornirà direttamente la risposta che cerchiamo.

In tutti i casi, abbiamo trovato alcune possibili domande che, indipendentemente dalla natura (sincera o meno) degli interlocutori, ci permettono di dimezzare (da 8 a 4) il ventaglio dei pianeti candidati: a seconda della risposta, scopriremo in quale parte del sistema solare si trovi il tesoro.

Se il tesoro si trova in uno dei pianeti interni del sistema solare, rivolgeremo di nuovo la stessa domanda, modificata soltanto nella parte in cui ci si riferisce all’insieme dei pianeti candidati. Utilizzando la prima delle formulazioni proposte:

«Se tu fossi il rappresentante di un pianeta di colore opposto al tuo, e ti venisse rivolta la domanda “Il pianeta col tesoro è tra il primo e il secondo del sistema solare?”, come risponderesti?»

Se invece apprendiamo che il tesoro si trova tra i pianeti esterni:

«Se tu fossi il rappresentante di un pianeta di colore opposto al tuo, e ti venisse rivolta la domanda “Il pianeta col tesoro è tra il quinto e il sesto del sistema solare?”, come risponderesti?»

La risposta ci permetterà di ridurre a due l’insieme dei pianeti possibili. A questo punto ci basterà ripetere per la terza volta la stessa domanda, opportunamente modificata (ormai avete capito come fare), per arrivare all’individuazione finale del pianeta del tesoro.

Il luogo del tesoro

Il secondo enigma era un po’ più facile.

Supponiamo che l’affermazione del forestiero, “Io e il mio capo proveniamo da due pianeti dello stesso colore”, sia vera. Ciò implica che forestiero e custode siano entrambi sinceri o entrambi bugiardi. Ma se sono entrambi bugiardi, l’affermazione del forestiero non può essere vera, e cadiamo in una contraddizione. Se invece sono entrambi sinceri, contraddizioni non ce ne sono.

Se invece l’affermazione iniziale è falsa, il forestiero e il custode sono l’uno sincero e l’altro bugiardo: e avendo ipotizzato che il forestiero ha mentito, rimane la possibilità che il forestiero sia bugiardo e il custode sia sincero.

Guardate bene: in entrambi i casi, abbiamo dedotto che il custode dev’essere sincero. Questo significa che il pianeta del tesoro è un pianeta bianco, e quindi per scoprire quale sia la caverna del tesoro dobbiamo chiedere al custode, e credere alla sua risposta.

Rivolgendo la domanda al forestiero, invece, non potremmo avere certezze, dato che è impossibile determinare se egli sia sincero o mentitore.

Notate infine che la certezza della sincerità del custode ci rassicura anche sulla verità della sua affermazione iniziale: “Il tesoro si trova in una delle due. Nell’altra c’è un baratro: chi vi entra cade e muore.”

Quell’affermazione rappresentava, in un certo senso, la premessa dell’enigma: se fosse risultata falsa, o indecidibile, avremmo potuto dubitare sulla fondatezza stessa del problema, e sarebbe stato un bel guaio.

Le soluzioni dei lettori

L’unico lettore che ha inviato una soluzione corretta a entrambi gli enigmi è stato Maurizio Carlino. Già risolutore del problema di dicembre, ma non abbastanza velocemente per aggiudicarsi l’abbonamento, Carlino ha confermato la sua bravura inviando una trattazione molto accurata del problema. Nella sua soluzione, Carlino ha utilizzato la “prima” formulazione per le domande necessarie a individuare il pianeta del tesoro. Ha anche osservato, correttamente, che le tre domande possono essere indifferentemente poste allo stesso interlocutore, a tre interlocutori diversi su diversi pianeti, o a un “mix” dei due. Sempre con riferimento al primo dei due enigmi, Carlino ha fatto notare che la struttura delle domande da rivolgere agli abitanti è un albero binario, come quello indicato nella seguente figura, in cui i nodi interni rappresentano le domande, gli archi le risposte, e i nodi “foglia” indicano i pianeti possibili sedi del tesoro.

Albero binario che rappresenta la struttura della soluzione

Anche il lettore Marco Carnevale ha saputo sbrogliare l’intricata matassa rappresentata dal primo enigma, proponendo l’interessante formulazione alternativa “Se tu chiedessi a un tuo concittadino…?” Carnevale è arrivato però dopo Carlino, e inoltre, a ben vedere, la sua soluzione al secondo enigma non è stata del tutto soddisfacente. Altri due lettori (Claudio Capecchi, Michele D’Errico) hanno proposto le loro soluzioni ai due enigmi, commettendo però alcuni errori.

A tutti i lettori che hanno tentato, con successo o meno, di svelare il mistero della caccia al tesoro interplanetaria vanno comunque i nostri più sinceri complimenti!

Paolo Alessandrini
“Mr. Palomar”

Letture consigliate

  • Raymond Smullyan, Qual è il titolo di questo libro?, Zanichelli, 1981
  • Raymond Smullyan, Donna o tigre?, Zanichelli, 1985
  • Raymond Smullyan, Alice nel paese degli indovinelli. Racconto alla maniera di Lewis Carrol per bambini infraottantenni, Zanichelli, 1988
  • Raymond Smullyan, Satana, Cantor e l’infinito, Bompiani, 1994

La nuova foto della cometa di Rosetta

0

Abbiamo da poco festeggiato il risveglio di Rosetta, la sonda dell’ESA che è tornata in azione dopo il suo letargo programmato nello spazio profondo. In clima di ritorni, ecco allora che la cometa 67P/Churyumov-Gerasimenko (67P/CG), meta finale del viaggio della sonda, che è appena riapparsa da dietro il Sole. Il 28 febbraio il Very Large Telescope (VLT ) del Paranal Observatory dell’ESO, in Cile, ha puntato il suo obiettivo verso 67P/CG, ottenendo le immagini qui sopra.  Nella foto a sinistra la cometa appare come un puntino sopra la traccia di una delle stelle di fondo, che sono state eliminate nell’elaborazione dell’immagine di destra per evidenziare la sola cometa.

67P/CG si sta scaldando, avvicinandosi al Sole. La sua attuale luminosità indica che il ghiaccio del suo nucleo ha cominciato a evaporare. L’ESO sta collaborando con l’ESA per fornire un monitoraggio da Terra della cometa, osservazioni che verranno utilizzate dall’ESA per ottimizzare la navigazione di Rosetta e analizzare la quantità di polvere che la cometa sta rilasciando. La sonda inoltre trasporta con sé il piccolo lander che scenderà sul nucleo della cometa e permetterà di studiarlo in dettaglio, raccogliendo campioni di materiale superficiale per analisi chimico-mineralogiche.Nei prossimi mesi la sonda effettuerà manovre di avvicinamento, per raggiungere l’orbita di 67/P il prossimo agosto.

Rosetta è stata lanciata nel 2004, ed era già stata protagonista nel 2008 e nel 2010 dei sorvoli degli asteroidi Steins e Lutetia, grazie ai quali abbiamo acquisito immagini spettacolari di questi corpi celesti. Non ci resta che augurare buon risveglio a Rosetta e attendere insieme a voi nuove ed emozionanti immagini da una delle missioni spaziali più ambiziose mai progettate dall’uomo.

Un approfondimento sulla brillante supernova SN2014J in M82

La SN2014J ripresa da Marco Burali (Osservatorio MTM Pistia). Astrografo TAKAHASHI FRC 300 F 7.8 camera CCD FLI 1001e su A.P 1200 GTO. Luminanza combinata di filtri CLS-CCD + Infrarosso 800-1000nm + H-ALFA 6nm 120+60+180 minuti. Archivio dati: Astrografo TAKAHSHI BRC 250 F5 camera ccd SXVF-H16 FILTRI IR-CUT+RGB 300+60+60+60 minuti (rgb in binning 2x2).

Non si può certo dire che il nuovo anno sia iniziato sotto tono per quanto concerne le scoperte di SNe.

Il 5 gennaio, il gruppo del L.O.S.S. ( col telescopio KAIT dell’oss. Lick, a Berkeley in California) ha individuato, nella parte orientale della famosa spirale NGC 7331 (Peg), la SN 2014 C (tipo Ib) che, da allora, è salita quasi fino alla mag.+14,7 nel visuale; da notare che nella stessa galassia, solo 8 mesi prima, era apparsa un’altra SN discretamente brillante, la 2013 bu, scoperta dall’astrofilo giapponese K. Itagaki.

Passati alcuni giorni, il 14 fa capolino nella parte W di NGC 3448 (UMa) la SN 2014 G, del raro tipo IIpec., scoperta anche questa da Itagaki, un evento che ha suscitato molto interesse da parte dei professionisti, essendo diventato discretamente luminoso (mag.+14,5).

Ma il pezzo da novanta arriva una settimana dopo: nella prima parte della notte del 21, esattamente il 21,81 (T.U.), viene scoperta dal Prof. Steve Fossey, e dal suo gruppo di studenti dell’osservatorio dell’Università di Londra, una brillante SN di mag.+11,7 (+10,5 in R) nella “vicina” galassia peculiare NGC 3034 (M82), utilizzando un riflettore di 35 cm. di diametro.

M82 è certamente una galassia molto fotogenica, a causa della sua struttura particolare (è classificata come S Irr), testimone di una precedente interazione mareale con un altro membro del suo gruppo e, per la sua bellezza, ogni notte è il soggetto di svariate immagini, sia di professionisti che di amatori, tanto che non c’è da meravigliarsi che siano state realizzate svariate foto prima della scoperta.

Stranamente, questa stella ospite non è però stata individuata nei giorni precedenti quando era gia’ visibile alla mag.+15,6 circa (Itagaki) o di +16,3 (L.O.S.S.), forse a causa del denso affollamento di sorgenti luminose presenti nell’area. M82 ha infatti una brillanza superficiale molto elevata, e i programmi automatici di riconoscimento degli eventi transienti possono fallire, come può accadere persino all’occhio allenato di una bravo ricercatore come Itagaki (che non l’ha rilevata in ben 5 immagini antecedenti alla scoperta, ottenute con cadenza giornaliera!).

A causa della sua breve distanza, di circa 3,6 Megaparsec (Mpc), equivalenti a quasi 11,7 milioni di anni luce, è prevedibile che questo evento possa diventare molto luminoso, anche più della magnitudine apparente +10, e quindi osservabile anche con piccoli telescopi; ciò la renderebbe la più brillante SN degli ultimi 27 anni (dall’ormai lontano febbraio del 1987, quando apparve la 1987 A in LMC), riuscendo anche probabilmente ad eguagliare la SN2011fe in NGC 5457 (M101 in UMa), che raggiunse la mag.+9,8.

Naturalmente, dopo la scoperta del 21, una nutrita schiera di telescopi, sia a terra che nello spazio, si è buttata a studiare questa stella in esplosione, per non parlare dell’esercito di astrofili, da ogni parte del globo, che ha riempito i siti internet dedicati, con immagini e report osservativi (oltre un centinaio).

Vediamo allora in dettaglio la breve, ma già intensa storia di questa SN così importante per la moderna astrofisica. La galassia M82, fino agli inizi del 2004, non aveva mostrato esplosioni stellari, fatto alquanto strano per una “starburst “ galaxy quale è. Poi, finalmente, il 5 marzo del 2004 il gruppo del L.O.S.S. vi ha scoperto la SN 2004 am, di mag.+17,0.

Probabilmente per il solito motivo di trovarsi annidata in una densa regione nebulare HII, l’oggetto non era stato individuato in immagini d’archivio ottenute in precedenza, nonostante fosse già visibile alla mag.+16,.0 il 21/11/ 2003. L’analisi spettrale la classificò di tipo II, con forte arrossamento dovuto all’elevata presenza di polveri interstellari nella zona d’origine (si rilevarono ben 5 magnitudini di estinzione nel visuale!).

Dopo poco più di 2 anni e mezzo, M82 fece riaccendere i riflettori su di sé per la scoperta di un significativo flusso radio proveniente dal suo centro (con un picco di circa 120 mJy), avvenuto tra il 29/10/2007 ed il 24/3/2008 (data di scoperta del radiotelescopio VLA in New Mexico). Anche se direttamente non venne ottenuta l’immagine ottica dell’evento esplosivo, la spiegazione più ovvia, per un simile transiente durevole, parve essere l’esplosione di una radio SN, probabilmente di tipo core collapse; di conseguenza, le venne assegnata la denominazione ufficiale SN 2008 iz dal CBAT di Boston.

Ma non è finita: dopo poco più di un anno, sempre tramite il grande radiotelescopio VLA, venne scoperto un altro transiente ottico tra l’1 e il 5 maggio del 2009, con caratteristiche spettrali simili al precedente. Indagini spettroscopiche nel vicino infrarosso col grande riflettore “Gemini Nord” (dell’11 giugno) non evidenziarono alcun evento esplosivo dopo gli inizi di maggio, e neanche un eventuale progenitore in immagini d’archivio di mesi precedenti l’eventuale esplosione (ammesso che il tipo di SN fosse anche qui II o I b/c). Come per la precedente SN 2008 iz, anche per questa probabile SN radio non è stato possibile associare la sua posizione, entro un errore di 1/3 di sec. d’arco, con le innumerevoli sorgenti presenti nelle immagini X del telescopio spaziale Chandra, a causa del denso affollamento di simili sorgenti nel nucleo di M82 (per lo più resti di SNe o binarie X). Per questo evento più incerto non è mai stata assegnata una denominazione ufficiale.

Riassumendo, abbiamo almeno 3 eventi esplosivi nell’arco di soli 5 anni (2004 – 2009) e, con l’ultima scoperta, arriviamo a 4 SNe in circa 10 anni: non male per una galassia con una popolazione stellare decisamente minore della nostra Via Lattea, o della compagna M81. Ma, naturalmente, dato il brevissimo intervallo di tempo considerato, non è certo possibile dire che in M82 appaia una SN ogni circa 2 anni! Il lungo digiuno di circa 1 secolo precedente al 2004 lo testimonia…

Fino a pochi giorni fa M82 aveva prodotto solo SNe di tipo II (o eventualmente I b/c), cioè SNe originate dal collasso del core stellare: sono gli eventi più frequenti, specialmente in una galassia “starburst” con popolazione stellare giovane. Ma ogni tanto spuntano alla ribalta anche oggetti di natura diversa come le SNe di tipo Ia, e, guarda caso, quest’ultima SN appartiene proprio a questa categoria specifica. Per questo evento si può disporre, fortunatamente, di varie stime di magnitudini su immagini precedenti la scoperta del 21 gennaio, ovvia conseguenza del fatto, come si è già detto, che una galassia così famosa e spettacolare, ogni notte è tenuta sotto controllo da molti osservatori, anche occasionali, che ne realizzano immagini anche per il solo fine estetico, e non a scopi di ricerca. Le varie comunicazioni pervenute al noto sito gestito da D. Bishop, il “Latest Supernovae”, lo confermano:

K. Itagaki 2014/01/15.570 +14.4 (V) Antartic Survey Tel. 15.827 +14.38 (U) L.O.S.S. 16.38 +13.3 (V) K. Itagaki 16.64 +13.9 (V) K.Itagaki 17.61 +13.3 (V) Antartic Survey Tel. 17.69 +13.1 (U) K.Itagaki 19.62 +12.2 (V) MASTER – Tunka 19.74 +11.8 (V) Antartic Survey Tel. 19.83 +11.97 (U) K. Itagaki 20.62 +11.9 (V) MASTER – Tunka 20.68 +11.6 (V)

Interessante notare la curva di luce provvisoria che il gruppo del L.O.S.S. ha pubblicato in rete, dove si può dedurre parte della veloce salita fotometrica dell’evento dopo l’esplosione iniziale.

CURVA DI LUCE DEL L.O.S.S.

La prima immagine in assoluto è perciò quella di Itagaki, esattamente del 15.57. L’indagine specifica degli astronomi non si fa attendere molto; dal 21 gennaio, come un virus in rete, si diffonde subito la notizia dell’apparizione di una brillante SN in uno degli oggetti più belli del catalogo di Messier.

Il primo spettro proviene dal riflettore ARC di 3.5 m. di diametro, all’Osservatorio di Apache Point ( New Mex), il 22.305: sono ben evidenti le righe in emissione del Si II, con v = 20.000 Km./sec. circa, nonché le righe del Na D in assorbimento; è la classica firma delle Ia. Poche ore dopo, il 22.400, un secondo spettro ottenuto dall’Osservatorio Higashi di Hiroshima, col riflettore Tanaka di 1.5 m. , rivela una velocità di espansione delle righe del Si II di circa 15.000 Km./sec., confermando il tipo Ia (ad alta velocità), una settimana circa prima del massimo. Il primo report fotometrico nell’infrarosso è del 22.760 e fornisce i valori di: J = 9,94 +/-0,06 ; H = 9,83 +/-0,06; K = 9,80 +/-0,08.

Nel dominio X anche le più accurate analisi profonde dell’area, eseguite col telescopio spaziale Chandra, non evidenziano alcun segnale associato alla nana bianca in fase finale di accrescimento pre esplosivo. Il 23.30 le indagini profonde si spostano nel campo delle frequenze radio/millimetriche (VLA e CARMA); a queste lunghezze d’onda la palla di fuoco dell’esplosione non si mostra affatto, è perciò deducibile una bassa densità del mezzo interstellare entro un raggio di circa 10 miliardi di km (confrontabile con le dimensioni del diametro dell’orbita di Nettuno) attorno alla posizione della SN. Identico risultato, poche ore dopo, col grande telescopio radio GMRT il 23.78.

In una simile caccia al progenitore non potevano rimanere esclusi i colossali telescopi ottici dell’ultima generazione: il Large Binocular Telescope (LBT) fornisce un limite superiore di mag. apparente nella zona dell’esplosione, su immagini del 4 gennaio, corrispondente a +24,3 R (con 3 sigma), che equivalgono, a quella distanza, a una sorgente di mag. assoluta M = -3,4 .

Ulteriori spettri, realizzati con i telescopi “I. Newton”  di 2,5 m alle Canarie e “G.D. Cassini” di 1,5 m all’Osservatorio di Loiano (Bo), confermano il forte arrossamento di questa SN, stimabile in B-V = 1,2.

E il telescopio spaziale Hubble (HST)? Non ha certo continuato le sue osservazioni di altri oggetti, ma anche lui si è concentrato sulla ricerca di un eventuale progenitore che, in caso di risultato positivo, diverrebbe una scoperta epocale dato che mai, in precedenza, nessun altro strumento era riuscito nell’impresa (le nane bianche, e le loro compagne di tipo solare/sub gigante nel sistema binario, non sono certo stelle luminose da potersi osservare in galassie esterne).

Determinata con elevata precisione la posizione della 2014 J, sono state esaminate 3 immagini (a 435, 555 e 814 nm) ottenute il 27/3/2006: ma, anche in questo caso, non sono emersi alla luce candidati progenitori, sia nei dati della ACS (Advance Camera for Survey) sia della WFC (Wide Field Camera).

Il team dell’HST (Atel N.5824 del 28 gen.) conclude sottolineando che, nonostante la ricerca abbia fissato dei limiti superiori di mag. apparente +23,3 a 435nm, +23,4 a 555 nm e +24,5 a 814 nm, in linea con le precedenti ricerche del LBT, si può pensare alla possibilità che il progenitore di 2014 J sia del tipo nova classica (come per esempio U Sco = nana bianca + secondaria sub gigante), o anche nova ricorrente (RS Oph / T CrB = nana bianca + gigante rossa), e che questi limiti non possano escludere del tutto la possibilità che tali sistemi doppi siano i potenziali progenitori di SNe Ia.

Rimane però un fatto: recenti osservazioni, proprio dell’HST, alla ricerca di progenitori di SNe Ia, nei residui gassosi delle esplosioni storiche avvenute nella nostra galassia, non hanno sortito alcun risultato, cioè non sono stati individuati eventuali compagni di tipo: gigante rossa, sub gigante o stella tipo solare, entro distanze di alcuni anni luce dal centro del residuo (Cas A = SN Ia del 1667 / Lup A = SN Ia del 1006).

Dai risultati di queste ricerche sembra venire messo in discussione il modello classico della singola degenere, accettato da decenni dalla comunità scientifica, con conseguente riconsiderazione del modello alternativo della doppia degenere (2 nane bianche legate in un sistema binario stretto che si fondono, per perdita di momento angolare, con conseguente esplosione termonucleare).

Ritorniamo, dopo queste interessanti considerazioni astrofisiche, al comportamento della nostra stella ospite. Il 25 gennaio anche il grande telescopio Herschel, di 4,2 m all’Osservatorio di La Palma (Canarie), realizza spettri ad alta risoluzione ottenendo valori di v = 13.400 km/sec per le righe del Si II, confermando un sensibile rallentamento del guscio gassoso in espansione. Ulteriori stime fotometriche (del 25.87) vengono ottenute al telescopio dell’ Università “N. Copernicus” in Polonia, e sembrano mostrare l’inizio della fase di massimo della curva di luce.

Un altro aspetto interessante di questa brillante SN viene evidenziato dalle analisi spettro polarimetriche (del 28.16) col riflettore di 2,2 m all’Osservatorio di Calar Alto (Spagna), che mostrano una marcata polarizzazione del continuo spettrale, dal 6,5% (B) al 2% (R), da cui si può dedurre che i grani di polvere interstellare e intergalattica, lungo la linea di vista tra noi e la SN, hanno dimensioni minori di quelli tipici del disco della nostra galassia (M82 si trova infatti lontano dal piano della Via Lattea).

Il 28.13, sempre col riflettore Herschel, si deducono i valori: riga del Si II (635,5 nm) con v = 12.600 km/sec, riga del C II (658 nm) con v = 13.700 km/sec , riga del S II (546.8 nm.) con v = 12.150 km/sec, che mostrano un basso gradiente di diminuzione della velocità di espansione. In questa fase, circa 20 giorni dopo l’esplosione iniziale (data plausibile 14 gennaio?), il residuo gassoso ha già percorso oltre 25 miliardi di km, alla spaventosa velocità media di circa 14.000 km/sec! Dal 27 gennaio la fase di crescita fotometrica si è praticamente conclusa, e l’evento si assesta nel massimo largo della curva di luce; alcune stime di osservatori non professionisti riportano la mag.+10,6 costante (dal 27 al 31 gen.), probabile max.(V).

Rimane comunque un fatto importantissimo: anche se questa SN non eguaglierà la luminosità apparente della recente 2011 fe in M110, è la più vicina Ia degli ultimi 42 anni, da quando, il 15 maggio 1972, l’astronomo C. Kowal scoprì la 1972 E in NGC 5253 (Cen), distante circa 10 mil. di anni luce, che raggiunse la mag.+7,2! …e che divenne, per svariati anni seguenti, la SN Ia di riferimento principale. E se non avesse sofferto di oltre 1 magnitudine di estinzione, 2014 J avrebbe potuto raggiungere la +9.5 (V) circa, corrispondente ad una M = -18,2 , valore sensibilmente inferiore alla mag. assoluta di una Ia tipica (-19,0), fatto che implicherebbe una estinzione un po’ più elevata di quanto finora indicato.

Dopo una sosta di oltre 2 settimane nella fase di max., quindi dalla metà di febbraio, la sua luminosità (in V) subirà una prima veloce diminuzione (di circa 2,5 mag. in una trentina di giorni), seguita da un più lento calo per almeno un anno (di oltre 5 mag.), a causa della sensibile diminuzione della densità dei gas espulsi, che diverranno sempre più trasparenti e freddi. Alla fine di quest’anno, la 2014 J si porterà perciò fuori della portata anche dei maggiori strumenti amatoriali, e resteranno visibili, per parecchi anni, solo le ceneri della sua potente esplosione con i più grandi telescopi professionali.

Si ringrazia il Dott. Andrea Pastorello (Osservatorio Astronomico di Padova) per la gentile supervisione.

Giancarlo Cortini (Presidente del “Gruppo Ricerca SNe Fritz Zwicky”)

Al Planetario di Ravenna

0

11.03: “Keplero, la sonda che ha scoperto pianeti alieni” di Claudio Balella.

Per info: tel. 0544-62534 – info@arar.it
www.racine.ra.it/planet – www.arar.it

CONGIUNZIONE CON LUNA, MARTE E SPICA

0
congingiunzione_luna18Mar

congingiunzione_luna18Mar
Come avviene da ormai tre mesi a intervalli di una lunazione, il nostro satellite darà vita a una bella congiunzione con Spica e Marte, che questa volta potrà essere seguito a partire dalle 21:30 del 18 marzo. All’ora indicata nella illustrazione (in orientamento altazimutale) i tre oggetti saranno alti circa +12° sull’orizzonte di est-sudest, con la Luna situata 1,2° da Spica e 4° da Marte.

ASSOCIAZIONE CASCINESE

0

10.03: Corso base di Astrofotografia con Digitale Reflex e camera WEB, lezione pratica con gli strumenti sul campo. Presso “Parco Collodi” Via Porto Santa Lucia a San Benedetto (Cascina).

Per informazioni:
Domenico Antonacci Cell: 347-4131736
domenico.antonacci@astrofilicascinesi.it
www.astrofilicascinesi.it

Global Test 179 – la montatura ibrida Meade LX80

GLOBALTEST, un NUOVO FORMAT per i TEST STRUMENTALI

E’ cominciata con il n. 178 di Coelum Astronomia una nuova rubrica tecnica in cui saranno presentati più prodotti, ognuno dei quali corredato dal giudizio “collettivo” (medio e ponderato) di utenti ed esperti di tutto il mondo che hanno già avuto modo di usarli e di esprimere il loro parere.
Questo tipo di recensione “allargata” al web – che include i siti web personali, i forum e i social network – nelle nostre intenzioni dovrebbe permettere ai lettori – o almeno lo speriamo – di farsi un’idea più oggettiva delle qualità e degli eventuali limiti e difetti della strumentazione presente sul mercato, orientando pertanto in modo più preciso i futuri acquisti. La rubrica “cartacea” verrà inoltre affiancata da contenuti multimediali che verranno segnalati nel testo (tramite link e QR-code) e raccolti in queste pagine, per approfondire e completare quanto scritto sulla rivista.

Ovviamente ci attendiamo dai lettori molti suggerimenti su come migliorare questo nuovo servizio.

Riportiamo quindi di seguito i video e i link ai contributi, nell’ordine in cui vengono proposti, della rubrica Global Test pubblicata sul n. 179 di Coelum Astronomia a cura di Plinio Camaiti (Telescope Doctor).

Dal WEB il parere degli utenti su…

LA MONTATURA IBRIDA MEADE LX80

La presentazione del prodotto dal sito del costruttore

La presentazione del prodotto sul sito dedicato dell’importatore e distributore per l’Italia Skypoint

UNBOXING LX80
video di Jack Huerkamp


Vibrazioni all’oculare

Test vibrazioni all’oculare
video di Jack Huerkamp

recensione di Fabio Bocci (Cocco Bill sul Forum Coelestis)

esperienza dell’utente Max (Forum Yahoogroups, in lingua inglese)


Test “pro” e “contro”

Un elenco di pro e contro sempre dall’utente Max del Forum Yahoogroups e ancora nel thread di Fabio Bocci sul forum Coelestis


EQ drift

video di Jack Huerkamp


LX80 controllata con modulo SkyFi
video del giapponese hawkch77

Rumorosità del GOTO
video di Thomas Mohr


Qualità dell’inseguimento…

video di Jack Huerkamp

…e dell’autoguida

Esperienza dell’utente Jokehoba su Stargazers Lounge


.

L’articolo completo è pubblicato su Coelum n.179 – 2014 a pagina 44

Asteroide in dieci cocci

La sequenza della disintegrazione fotografata dallo Hubble Space Telescope. Crediti: NASA, ESA, D. Jewitt/UCLA
La sequenza della disintegrazione fotografata dallo Hubble Space Telescope. Crediti: NASA, ESA, D. Jewitt/UCLA

Asteroide disintegrato sotto gli occhi di Hubble

Prima erano tre. Poi cinque. E nell’ultima immagine acquisita dal telescopio spaziale Hubble di frammenti se ne contano dieci. I quattro più grandi hanno un raggio di circa 200 metri, e mettendoli tutti sulla bilancia la lancetta segnerebbe qualcosa come 200mila tonnellate, briciola più briciola meno. Questo è quanto si legge nell’ultimo bollettino – nella fattispecie, un articolo appena pubblicato su Astrophysical Journal Letters – relativo a P/2013 R3: un oggetto individuato per la prima volta il 15 settembre del 2013 dai telescopi delle survey CatalinaPan-STARRS, a circa mezzo miliardo di km dal Sole, nella cosiddetta Fascia principale.

Come molti altri oggetti scoperti recentemente nella regione fra Marte e Giove, P/2013 R3 rientra nella categoria delle “comete della fascia principale”: corpi celesti che si muovono come asteroidi ma si comportano come comete. In che senso? Per esempio sfaldandosi, come appunto avviene in questo caso. Non solo: ognuno dei dieci frammenti di quel che fu P/2013 R3 è dotato di coda. Dieci piccole appendici polverose simili in tutto e per tutto a quelle delle comete.

Mentre nel caso delle comete, data la loro fragilità, assistere alla frammentazione è un evento abbastanza comune, uno sfaldamento progressivo come questo, avente per protagonista un asteroide della fascia principale, è uno spettacolo inedito persino per veterani come David Jewitt, primo autore dell’articolo: uno che di oggetti del genere, essendo fra coloro che nel 1992 contribuirono alla scoperta della fascia di Kuipert, ne deve aver visti innumerevoli. «Osservare questa roccia cadere a pezzi sotto ai nostri occhi è davvero sorprendente», ammette il ricercatore di UCLA.

Quanto alla causa dello sbriciolamento, anche se ancora non c’è sicurezza assoluta, andando per eliminazione non rimane che dare la colpa al Sole. La prima ipotesi che i ricercatori hanno scartato è quella dell’impatto con un altro asteroide: in tal caso la roccia si sarebbe dovuta disintegrare con molta più violenza, e i frammenti dovrebbero allontanarsi a velocità elevatissime, mentre quelli osservati vanno pigramente alla deriva l’uno rispetto all’altro a nemmeno due chilometri all’ora. Improbabile anche che stia perdendo pezzi per la pressione dei ghiacci interni: la grande distanza dal Sole, rimasta più o meno invariata dagli albori del Sistema solare, fa sì che la temperatura dell’asteroide sia infatti troppo bassa per giustificare l’ipotesi d’un processo di sublimazione in atto.

Non resta dunque che un bizzarro effetto, detto effetto YORP, dovuto alla luce del Sole, che poco a poco incrementerebbe la velocità di rotazione della roccia fino a mandarla in frantumi sotto l’azione della forza centrifuga. Un’eventualità della quale gli scienziati discutono da anni, quella della disintegrazione per effetto YORP, ma che mai prima d’ora era stata osservata con certezza.

Per saperne di più:

  • Leggi su The Astrophysical Journal Letters l’articolo “Disintegrating Asteroid P/2013 R3“, di David Jewitt, Jessica Agarwal, Jing Li, Harold Weaver, Max Mutchler e Stephen Larson

Il Planetario a Piacenza DAL 14 FEBBRAIO AL 22 MARZO

09.03: Collegamento Osservatorio dalle Dolomiti

Per informazioni: info@planetariopiacenza.com
www.planetariopiacenza.com

BARI INCONTRA L’UNIVERSO

08.03, ore 15:00: presso il l’IISS Cartesio di Triggiano (Ba).

info@saitpuglia.it
w w w. s a i t p u g l i a . i t

Al Planetario di Ravenna

0

08.03: International Sidewalk Astronomy Night (osservazione al telescopio, ingresso libero).

Per info: tel. 0544-62534 – info@arar.it
www.racine.ra.it/planet – www.arar.it

I Venerdì dell’Universo 2014

0

Tornano anche quest’anno i Venerdì dell’Universo, una serie di seminari scientifici per avvicinare, giovani e non, alla Fisica,
all’Astronomia e alle Scienze in generale, con la speranza che per molti giovani non sia solo una curiosità momentanea,
ma anche un’occasione di spunto per i loro studi professionali o amatoriali, dal momento che l’Università di
Ferrara offre importanti opportunità in questi campi.

07.03: “I pinocchi della Scienza” a cura di STEFANO OSSICINI.

Diretta streaming video: http://web.unife.it/unifetv/universo.html
Per informazioni: Tel. 0532/97.42.11 – E-mail: venerdiuniverso@fe.infn.it
www.unife.it/dipartimento/fisica – www.fe.infn.it
Organizzati da: Dip. di Fisica Università di Ferrara, Istituto Nazionale di Fisica Nucleare, Gruppo Astrofili Ferraresi “Columbia“ e Coop. Sociale Camelot.

Gruppo Astrofili DEEP SPACE

07.03: “Il cielo in rosa: le donne nella storia dell’astronomia” di Matteo Romico.

Per info: 0341.367584 – www.deepspace.it

Associazione Ligure Astrofili Polaris

07.03: ”L’Universo olografico. Una mera ipotesi?” di Paolo Brovia.

Per info: cell. 346.2402066 – info@astropolaris.it
www.astropolaris.it

Gruppo Astrofili DEEP SPACE

0

07.03: “Il cielo in rosa: le donne nella storia dell’astronomia” di Matteo Romico.

Per info: 0341.367584 – www.deepspace.it

Associazione Astrofili Centesi

0

07.03 : “Misteri e curiosità dal pianeta Marte”. Al telescopio: Luna, Giove, Marte.

Per info: 346.8699254, astrofilicentesi@gmail.com

www.astrofilicentesi.it

Circolo Astrofili Veronesi

07.03: “La ricerca scientifica delle stelle variabili dall’Oss. Monte Baldo” di Flavio Castellani.

Per informazioni: info@astrofiliveronesi.it
Cell: 334 7313710 (Antonio Cagnoli)
www.astrofiliveronesi.it

BARI INCONTRA L’UNIVERSO

07.03, ore 11:00: presso il Liceo Scientifico A. Moro di Margherita di Savoia (BT).

info@saitpuglia.it
w w w. s a i t p u g l i a . i t

BARI INCONTRA L’UNIVERSO

07.03, ore 15:00: presso il Liceo Scientifico G. Marconi di Foggia.

info@saitpuglia.it
w w w. s a i t p u g l i a . i t

Al Planetario di Ravenna

0

07.03: “Ho bisogno (del mio) spazio! Storie di donne astronaute” di Sara Ciet.

Per info: tel. 0544-62534 – info@arar.it
www.racine.ra.it/planet – www.arar.it

Unione Astrofili Bresciani Lumezzane (Brescia)

0

07.03: “I colori del cielo” di A. Soffiantini.
Corso “Impara ad usare il tuo telescopio”
Ogni giovedì di marzo avrà luogo al Museo di Scienze Naturali di Brescia l’annuale corso a cura di Wladimiro Marinello, inizio ore 20:30. Sono previste alcune lezioni pratiche al Planetario di Lumezzane e all’Osservatorio Serafino Zani. La partecipazione è libera ma si consiglia la prenotazione.

Per info: osservatorio@serafinozani.it
www.astrofilibresciani.it

Circolo Astrofili Veronesi

0

07.03: “La ricerca scientifica delle stelle variabili dall’Oss. Monte Baldo” di Flavio Castellani.

Per informazioni: info@astrofiliveronesi.it
Cell: 334 7313710 (Antonio Cagnoli)
www.astrofiliveronesi.it

Gruppo Amici del Cielo di Barzago

0

07.03: 2a lezione ”Orientarsi con le stelle: costellazioni e zodiaco”.

Per info: didattica@amicidelcielo.it
www.amicidelcielo.it

Associazione Ligure Astrofili Polaris

0

07.03: ”L’Universo olografico. Una mera ipotesi?” di Paolo Brovia.

Per info: cell. 346.2402066 – info@astropolaris.it
www.astropolaris.it

2014 DX110 sfiora la Terra

0
Il diagramma dell'orbita (cliccare per il diagramma interattivo dell'SSD/JPL).

Domani 5 marzo, alle 21:07 TU (22:07 italiane), un asteroide di circa 30 metri di diametro passerà a meno di 350.000 km dalla Terra, circa 0,9 distanze lunari.

2014 DX110 – questo il nome assegnato all’asteroide, un NEO della famiglia Apollo – non sarà facilmente osservabile: non sarà infatti visibile ad occhio nudo, serviranno telescopi con un’apertura di almeno 40 cm per riuscire a fotografarlo e comunque, a causa della sua alta velocità, sparirà dalla vista piuttosto velocemente.

Per chi volesse comunque tentare la sfida, a questo link trovate le effemeridi per provare ad inseguirlo già da questa notte, altrimenti lo si potrà seguire in diretta streaming domani sera grazie al Virtual Telescope (meteo permettendo) che ne commenterà l’avvicinamento a partire dalle 20:30.

Risorse online:

Le effemeridi ogni 4 minuti per il 4 e 5 marzo (calcolati per una località situata a 12° di longitudine Est, 42° di latitudine Nord)

La diretta del Virtual Telescope

La pagina dedicata sul sito dell’SSD (Solar System Dynamics) con il diagramma dell’orbita e tutti i parametri fisici e orbitali dell’asteroide

Supernovae scoperte a gennaio 2014

SN2014K in PGC24869 di Riccardo Mancini cliccare per ingrandire).
Pubblichiamo il testo integrale della nota rubrica dedicata alle Supernovae curata da Fabio Briganti e Riccardo Mancini dell’Italian Supernovae Search Project e pubblicata su Coelum 179 di marzo, che per la quantità di interessanti scoperte e belle immagini è stato pubblicato solo in versione ridotta sulla rivista.
SN2014J in M82 ripresa da Marco Burali (Osservatorio MTM di Pistoia)

Come preannunciato lo scorso mese, iniziamo questa rubrica con il racconto della curiosa storia della scoperta della bella supernova in M82. Siamo a Londra. È il 21 gennaio 2014 e il professore universitario Steve J. Fossey, docente dell’University College, decide di effettuare una sessione pratica al telescopio di 35 cm, posto nell’Osservatorio dell’Università, per dimostrare a quattro suoi studenti l’utilizzo della camera CCD. Come target osservativo viene scelta la bella M82 ma, nel mostrare la galassia ai suoi studenti, Fossey si accorge della presenza di un oggetto anomalo: a 54″W e 21″S dal centro della galassia c’è infatti una nuova stella di mag. +11,7!
Ed è stato così che per un puro caso, per una di quelle fortuite circostanze che di rado capitano nella vita, il professor Fossey ha scoperto una delle supernovae più importanti, una di quelle che lasciano un segno: la SN 2014J è infatti la supernova più vicina a noi dopo quella esplosa nel 1987 nella Grande Nube di Magellano.

SN2014J in M82 di Sergio Bove (Astronomicalcentre)

La notizia si espande velocemente sul web e i telescopi di mezzo mondo vengono puntati sull’oggetto. Poche ore più tardi viene ripreso lo spettro che permette di classificare la supernova come di tipo Ia, scoperta circa due settimane prima del massimo di luminosità, luminosità che nei giorni seguenti aumenta fino a raggiungere la mag. +10,0/+10,5.

M82 – che con M81 forma una delle coppie più fotogeniche e bersagliate dagli astrofotografi – è una galassia irregolare, nota come “Galassia Sigaro” per la curiosa forma, posta prospetticamente nell’Orsa Maggiore; è una vicina della Via Lattea da cui dista infatti “solo” 12 milioni di anni luce circa (per approfondire ulteriormente vedi anche la notizia online nei giorni della scoperta e l’approfondimento di Giancarlo Cortini).


SN2014K in PGC24869 ripresa da Riccardo Mancini (cliccare per ingrandire).

Altra Ultima ora dello scorso mese, mentre molti appassionati puntavano i propri telescopi verso M82, il 22 gennaio Giancarlo Cortini metteva a segno la prima scoperta italiana del 2014 notando una stella di mag. +15,4 nella piccola galassia PGC 24869, anch’essa nell’Orsa Maggiore, appena 5° a ovest della coppia M81-M82. PGC2 4869 fa parte di un terzetto di piccole galassie ed al momento della scoperta la supernova, a cui è stata assegnata la sigla SN 2014K, appariva addirittura più luminosa della galassia ospite. Lo spettro ha permesso di classificarla di tipo Ia, scoperta ben 20 giorni dopo il massimo: ovvero non è stata notata per circa tre settimane ed infatti sono state individuate due pre-discovery del programma professionale MASTER Robotic Net russo. Una ottenuta dal MASTER-Tunka che aveva immortalato la supernova già l’11 gennaio e l’altra dal MASTER-Kislovodsk che l’aveva ripresa addirittura il 30 dicembre, quindi in prossimità del massimo di luminosità. Questo dimostra che i programmi automatici di acquisizione e controllo immagini non sono infallibili.


SN2014L in M99 di Marco Burali

Il mese di gennaio 2014 sarà però ricordato anche per un altro record. Il giorno 26 è stata infatti trovata una seconda supernova in una galassia Messier, ovvero la SN 2014L, esplosa in M99. Le galassie del catalogo Messier sono 40 e da quando è stato inventato il telescopio sono state solo 59 le supernova scoperte in queste belle e “vicine” galassie… possono passare degli anni senza che in una Messier ne venga scoperta una: due a distanza di solo 5 giorni è un evento davvero più unico che raro!

La scoperta della SN 2014L è stata assegnata al programma professionale cinese THU-NAOC Transient Survey (TNTS), che fa capo al National Astronomical Observatories of China ed alla prestigiosa Tsinghua University di Pechino. La luminosità della nuova stellina, che il 26 brillava di mag. +17,2, è aumentata nei giorni successivi fino a raggiungere il massimo nei primi giorni di febbraio intorno alla mag. +14,5. Lo spettro ha permesso di classificarla di tipo Ic, scoperta pochi giorni prima del massimo. Come per la SN 2014J in M82, anche la SN 2014L mostra nello spettro delle intense righe strette in assorbimento del doppietto di NA I dimostrando che luce della supernova è oscurata da polveri presenti sulla linea di vista.

L'immagine di luminanza è stata realizzata da Marco Burali all'osservatorio MTM con Takahashi FRC 300, ccd FLI 1001 e 120 minuti di posa, mentre il segnale RGB è stato richiesto in cortesia a Robert Gendler e ripreso al Misti Observatory.

Anche per questa importante supernova abbiamo una doppia pre-discovery del solito Koichi Itagaki con un’immagine ripresa nella notte della scoperta ed un’altra ottenuta due giorni prima, il 24 gennaio, con la supernova appena visibile intorno alla mag. +18. L’esperto giapponese (anni 66) sicuramente uno dei più importati ricercatori amatoriali di supernovae al mondo, è sempre in prima fila sulle scoperte dell’emisfero nord. Avrebbe potuto aggiudicarsi, nel giro di soli 5 giorni, la paternità della scoperta di queste due importanti supernovae in galassie Messier avendo su entrambe le primissime immagini di pre-discovery, ma purtroppo questa volta non è stato aiutato dalla fortuna. Un’altra pre-discovery è stata ottenuta dall’americano Greg Haider che aveva ripreso la galassia con la supernova la notte precedente alla scoperta.
M99 è una stupenda galassia a spirale distante circa 55 milioni di anni luce. Anche se posta nella costellazione della Chioma di Berenice, M99 è una delle galassie più brillanti della ammasso della Vergine. Possiede una curiosa particolarità: una strana asimmetria dei suoi bracci. In particolare il braccio ad Ovest è più aperto rispetto agli altri e questo potrebbe essere dovuto ad una collisione avvenuta in passato con un’altra galassia. Per osservarla conviene attendere la seconda parte della notte per avere la galassia ad una buona altezza sull’orizzonte. Questa supernova purtroppo è passata un po’ in secondo piano, anche se notevole, perché oscurata dall’importanza della supernova in M82. Se fosse esplosa in un altro periodo avrebbe invece riscosso un’attenzione molto maggiore. Per M99 è questa la quarta supernova conosciuta. In passato infatti la galassia aveva ospitato le SN 1986I, 1972Q e 1967H, tutte e tre di tipo II.


SN2014G in NGC3448 di Riccardo Mancini

Il mitico ricercatore del sol levante Koichi Itagaki in questo inizio 2014 non si è però limitato ad inanellare delle pre-discovery, ma è riuscito a mettere a segno anche due successi, raggiungendo l’invidiabile quota di 96 scoperte. La prima, la SN2014F, scoperta l’11 gennaio nella galassia NGC6667 ed una seconda molto interessante e luminosa degna di un approfondimento. Si tratta della SN2014G individuata nella notte del 14 gennaio nella galassia irregolare NGC3448 che fa parte del catalogo ARP al numero 205 e posta nella costellazione dell’Orsa Maggiore a circa 80 milioni di anni luce, a meno di 3° dalla bella galassia M108. Itagaki deve dividere questa scoperta con l’americano Patrick Wiggins che aveva individuato la supernova nella stessa notte, ottenendo la sua prima scoperta. L’oggetto appare subito luminoso (mag.+15,4) e nei giorni seguenti aumenta ulteriormente la luminosità fino a raggiungere a fine gennaio la notevole mag. +14. Grazie allo spettro ripreso da Asiago il 15 gennaio con il telescopio Galileo da 1,22 metri viene evidenziato che si tratta di una supernova di tipo IIn scoperta appena dopo l’esplosione. Nello spettro sono però evidenti delle forti ed inusuali linee di assorbimento del He I e He II. Viene perciò ripreso nuovamente il 18 febbraio in Estonia dal Tartu Observatory con il telescopio da 1,5 metri ed il 25 Febbraio dagli Stati Uniti con il Multiple Mirror Telescope da 6,5 metri, permettendo di correggere la classificazione dell’oggetto in una rara supernova di tipo II L.

Ettore, campione dei troiani

0
Rappresentazione artistica di Hektor e della sua luna. L’interno dell’asteroide, composto da una mistura di rocce e ghiaccio, è mostrato in sezione. Crediti: H. Marchis & F. Marchis

Rappresentazione artistica di Hektor e della sua luna. L’interno dell’asteroide, composto da una mistura di rocce e ghiaccio, è mostrato in sezione. Crediti: H. Marchis & F. Marchis

624 Hektor è un asteroide decisamente interessante. Scoperto nel 1907, con i suoi 250 km di larghezza è il più grande degli asteroidi “troiani” che si muovono sulla stessa orbita di Giove. Ha una forma estremamente allungata e orbita su sé stesso in meno di sette ore. Unico fra i troiani, possiede anche una luna, scoperta nel 2006 da un team guidato da Franck Marchis del SETI Institute. Ora, dopo otto anni di osservazioni, un team internazionale di astronomi guidato dallo stesso Marchis, ha pubblicato uno studio su Astrophysical Journal Letters che getta nuova luce sull’origine e sulle bizzarre caratteristiche di 624 Hektor e della sua luna.

Lo studio, basato principalmente su osservazioni effettuate con il potente telescopio ad ottica adattiva del W. M. Keck Observatory alle Hawaii, suggerisce che l’asteroide e la sua luna possano essere il frutto di una collisione tra due asteroidi ghiacciati, catturati nella fascia di Kuiper dall’attrazione gravitazionale di Giove mentre il gigante gassoso ricollocava la propria orbita nel sistema solare, all’alba della sua formazione.

La luna, che ha un diametro di circa 12 km, orbita attorno all’asteroide ogni tre giorni, a una distanza di circa 600 km e con un’inclinazione di almeno 45 gradi rispetto all’equatore del corpo principale. Il calcolo della sua orbita è stato particolarmente laborioso, sia per le difficoltà d’osservazione che per il suo percorso bizzarro. “L’orbita della luna è ellittica e inclinata relativamente alla rotazione di Hektor, il che è piuttosto diverso da quello che osserviamo in altri asteroidi con satelliti nella fascia principale”, ha spiegato Matija Cuk, scienziato del Carl Sagan Center al SETI Institute, tra gli autori della ricerca. “Tuttavia, dalle nostre simulazioni al calcolatore risulta che l’orbita della luna è stabile lungo miliardi di anni.”

Due osservazioni effettuate nel 2006 e 2008 con il telescopio Keck II. Al centro di ogni immagine è ben distinguibile la forma oblunga di Hektor, mentre la piccola e debole luna è indicata dal cerchio azzurro. Crediti: F. Marchis / WMKO

Non si conoscono le esatte fattezze di 624 Hektor, ma il gruppo di ricerca ha raffinato un modello secondo cui l’asteroide ha una forma bilobata. Gli scienziati ritengono che questa strutture duale sia stata determinata da una collisione a bassa velocità tra due asteroidi, mentre la luna potrebbe essersi originata da materiale espulso durante la collisione.

Anche la peculiare composizione dell’asteroide offre importanti informazioni sulla sua origine. “Nel nostro studio abbiamo dimostrato che Hektor potrebbe essere costituito da una mistura di rocce e ghiaccio, una composizione simile agli oggetti della fascia di Kuiper, di Tritone e di Plutone”, ha detto Julie Castillo-Rogez del Jet Propulsion Laboratory NASA, uno dei partecipanti allo studio. “Il motivo per cui Hektor sia divenuto un asteroide troiano, localizzato a sole 5 volte la distanza Terra-Sole, è probabilmente legato alla ridisposizione su larga scala avvenuta all’epoca in cui i pianeti giganti stavano ancora migrando nel sistema solare.”

La complessa forma dell’asteroide e l’orbita bizzarra della sua luna saranno materia di discussione per la comunità scientifica. Nel frattempo, gli autori della ricerca sono alla ricerca di un nome per la luna, che non ne ha ancora uno proprio. Sono benvenuti i suggerimenti che rispondano a due requisiti: il nome del satellite deve essere strettamente connesso a quello del corpo primario, nonché riflettere le dimensioni relative tra i due.

Per saperne di più:

  • Il preprint dello studio “The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor” di F. Marchis, J. Durech, J. Castillo-Rogez, F. Vachier, M. Cuk, J. Berthier, M.H. Wong, P. Kalas, G. Duchene, M. A. van Dam, H. Hamanowa, M. Viikinkoski
  • L’articolo di Media INAF “Stregati da Giove

Il Planetario a Piacenza DAL 14 FEBBRAIO AL 22 MARZO

06.03, ore 21:00: conferenza Gruppo Astrofili.

Per informazioni: info@planetariopiacenza.com
www.planetariopiacenza.com

ASTROINIZIATIVE UAI

0

In diretta web con il Telescopio Remoto UAI Skylive dalle ore 21:30 alle 23:00, con la nuova Skylive Web-TV all’indirizzo:
http://www.skylive.it/WebTV.aspx
o collegandoti al Client Web:
http://app.skylive.name/Client/
IMPORTANTE: La tua iscrizione al canale Youtube è molto preziosa per noi al fine di migliorare la qualità della trasmissione. Basta cliccare sul pulsante sotto il video “iscriviti”, oppure andare al link diretto al nostro canale Youtube:
www.youtube.com/subscription_center?add_user=skylivechannel
Ovviamente tutto completamente gratuito.
Questi gli appuntamenti mensili.
UAI con SKYLIVE Una Costellazione sopra di Noi – Il primo venerdì di ogni mese, a cura di Giorgio Bianciardi (vicepresidente UAI).
SKYLIVE con UAI Rassegnastampa e cielo del mese – Quarto giovedì del mese a cura di Stefano Capretti.
www.skylive.it

ASTEROIDI – Cerere e Vesta insieme verso la super congiunzione di luglio

0
asteroidi_Mar

asteroidi_Mar

EFFEMERIDI di Marzo
(Coelum 179)

Eppure, da quasi un anno e mezzo, e cioè dal numero di ottobre 2012, non ho smesso di infilare qua e là dei riferimenti al singolare destino che sta legando gli spostamenti celesti dei due asteroidi più grandi della Fascia, e cioè al fatto che Vesta e Cerere negli ultimi 9 mesi non si sono mai distanziati per più di 7,5°, e che il prossimo luglio tale distanza si ridurrà a 10 primi d’arco!

asteroidi_Mar2In pratica, per una bizzarria del caso, il “pianeta nano” effettivo (Cerere) e il “pianeta nano” in pectore (Vesta), stanno viaggiando da mesi quasi affiancati, con traiettorie che, osservate dalla Terra, convergeranno quasi in un singolo punto il prossimo 4 luglio.

Si tratta ovviamente di convergenze prospettiche, perché in realtà i due oggetti, anche nel momento della strettissima congiunzione, disteranno tra loro la bellezza di 85 milioni di chilometri, ma resta comunque la straordinaria bellezza di un evento affascinante anche per la sua rarità.

.

Leggi tutti i dettagli e i consigli per l’osservazione, nell’articolo tratto dalla Rubrica Asteroidi di Talib Kadori presente a pagina 68 di Coelum n.179.

Al Planetario di Ravenna

0

04.03: “Ipazia e Margherita, storie sotto lo stesso cielo” di Raffaella Ortali e Mauro Graziani.

Per info: tel. 0544-62534 – info@arar.it
www.racine.ra.it/planet – www.arar.it

COMETE – La Pan-STARRS e poco più

0
comete_Mar

comete_Mar

EFFEMERIDI di Marzo
(Coelum 179)

La cometa più trendy del periodo sarà ancora la C/2012 K1 Pan-STARRS, ma non per quello che ci farà vedere al presente (che anzi, ha anche rallentato un poco la sua crescita), ma per quello che potrebbe diventare tra qualche mese (come abbiamo già riportato, sembra che la C/2012 K1 sia destinata nel prossimo autunno ad arrivare alla visibilità ad occhio nudo).

Comunque, al presente la C/2012 K1 sta puntando decisamente verso nord e durante il mese di marzo attraverserà la parte orientale dell’Ercole per poi arrivare a nord della Corona boreale. A metà mese sorgerà verso le 21:30, per cui si potrà seguire nella seconda parte della notte, fidando che la sua magnitudine possa scendere sotto la +10.

Leggi tutti i dettagli e i consigli per l’osservazione, con tutte le immagini, nella Rubrica Comete di Rolando Ligustri presente a pagina 66 di Coelum n.179

IL CIELO DEL MESE – IL CIELO DI MARZO

0

cartina marzo179d

EFFEMERIDI di Marzo
(Coelum 179)

Ricordiamo poi che il giorno 30 si tornerà all’ora estiva (TU+2). In quella data, a partire dalle ore 02:00 locali, bisognerà portare gli orologi avanti di un’ora.

Inoltre, nel fine settimana del 29-30 marzo la Luna sarà Nuova e si realizzeranno quindi le condizioni migliori per tentare la Maratona Messier, ovvero l’osservazione in un’unica notte di tutti (o quasi) i 110 oggetti del celebre catalogo.

In marzo, il Sole si muoverà nell’Acquario fino al giorno 12, per passare quindi nella grande costellazione dei Pesci, dove resterà fino al 19 aprile.

Le ore di buio diminuiranno ancora, tanto che a inizio mese la durata della notte astronomica sarà di poco più di 9,5 ore, e alla fine sol-tanto di 7,85. Il Sole sta infatti “risa-lendo” velocemente l’eclittica, e il giorno 20 (data dell’equinozio di primavera) si troverà al punto gamma (γ), dove la sua declinazione (e anche l’ascensione retta) sarà esattamente pari a zero. Il Sole, giacendo sul-l’equatore celeste, sorgerà e tramonterà quasi perfettamente a est e a ovest e la durata della notte sarà teoricamente uguale a quella del giorno (a complicare le cose contribuiscono in realtà molti altri fattori, come ad esempio la rifrazione atmosferica: alle nostre latitudini la parità si raggiungerà infatti il giorno 17).

Equinozio di PrimaveraInizierà con ciò la primavera astronomica, una delle stagioni attualmente più lunghe nel nostro emisfero per effetto della diversa velocità della Terra lungo la sua orbita secondo quanto descritto dalla seconda legge di Keplero: 92,8 giorni contro i 93,6 dell’estate, gli 89,8 dell’autunno e gli 89 dell’inverno.

Leggi tutti i dettagli e i consigli per l’osservazione, con tutte le immagini, nella Rubrica Il Cielo di Marzo presente a pagina 56 di Coelum n.179

Premio Letterario Galileo 2014 per la divulgazione scientifica

PREMIO LETTERARIO

GALILEO

Per la divulgazione scientifica
PADOVA 2014

La Giuria scientifica della settima edizione del Premio Galileo, presieduta per il 2014 da Nicoletta Maraschio, ha selezionato lo scorso gennaio la cinquina finalista delle opere da sottoporre al giudizio della Giuria popolare, formata da circa 2.500 studenti delle IV superiori di tutte le Province italiane:

  • Marco Ciardi con “Terra. Storia di un’idea”, 2013 Laterza;
  • Adriano Zecchina con “Alchimie nell’arte. La chimica e l’evoluzione della pittura”, 2012 Zanichelli;
  • Frans de Waal con “Il bonobo e l’ateo. In cerca di umanità fra i primati”, 2013 Raffaello Cortina;
  • Vincenzo Barone con “L’ordine del mondo. Le simmetrie in fisica da Aristotele a Higgs”, 2013 Bollati Boringhieri;
  • Nicola Nosengo con “I Robot Ci Guardano. Chirurghi A Distanza, Aerei Senza pilota e automi solidali”, 2013 Zanichelli.

La premiazione dell’opera vincitrice, selezionata tra la cinquina finalista da una giuria popolare, formata da studenti di 110 istituti superiori di altrettante province italiane, si svolgerà giovedì 9 maggio 2014 presso il Centro Altinate/San Gaetano, via Altinate, 71.

Incontri con gli autori finalisti
Centro culturale Altinate/San Gaetano, via Altinate, 71 – Padova

I cinque finalisti del Premio letterario Galileo presentano le loro opere durante un ciclo di incontri. Gli appuntamenti serali sono aperti a tutta la cittadinanza, mentre quelli che si svolgono di mattina sono dedicati alle scuole.

  • mercoledì 2 aprile, ore 18:00 – auditorium
    Incontro con Adriano Zecchina, autore di “Alchimie nell’arte. La chimica e l’evoluzione della pittura”
  • mercoledì 9 aprile, ore 18:00 – auditorium
    Incontro con Vincenzo Barone, autore di “L’ordine del mondo. Le simmetrie in fisica da Aristotele a Higgs”
  • mercoledì 16 aprile, ore 18:00 – auditorium
    Incontro con Marco Ciardi, autore di “Terra. Storia di un’idea”
  • mercoledì 30 aprile, ore 18:00 – auditorium
    Incontro con Nicola Nosengo, autore di “I robot ci guardano. Aerei senza pilota, chirurghi a distanza e automi solidali”
  • giovedì 8 maggio, ore 18:00 – agorà
    Incontro con Frans de Waal, autore di “Il bonobo e l’ateo. In cerca di umanità fra i primati”
Di seguito le schede dei cinque libri in concorso. Invitiamo tutti i lettori a leggerli e ad esprimere la propria opinione.

IL CIELO SEPOLTO – SULLA POPPA DELLA NAVE ARGO

0
cieloSepolto
Ecco come apparirebbe la costellazione della Poppa nel momento del suo transito al meridiano, vista da una qualsiasi località costiera della Sicilia meridionale. La figura si vedrebbe per intero, mentre l'orizzonte ne coprirebbe una buona parte se la osservassimo da Roma o Milano.

Si narra che la mitica nave Argo, testimone delle eroiche imprese di Giasone e degli argonauti, alla fine dell’avventura sia stata consacrata a Poseidone e trasportata in cielo, dove è poi sopravvissuta come costellazione fin quasi ai giorni nostri.
Una costellazione tuttavia talmente vasta che prima l’astronomo francese Nicolas Louis de Lacaille, nel 1756, e poi definitivamente l’astronomo statunitense Benjamin Gould (1824-1896), nel 1879, decisero di dividere in tre parti: la Carena, la Vela e la Poppa.
Questo mese ci occuperemo proprio di quest’ultima, una costellazione che misura circa 670 gradi quadrati ed è teoricamente accessibile, nella sua interezza, soltanto a coloro che hanno la fortuna di abitare nell’estremo sud della Penisola; si estende infatti dai –11° fino ai –51° di declinazione, fino a sfiorare Canopo, la seconda stella più brillante del cielo (posta di pochissimo più a sud, eppure inosservabile da qualsiasi punto d’Italia, se non – forse – da Lampedusa).

L'ammasso NGC 2451, un oggetto davvero notevole per le dimensioni apparenti (circa 50 primi di diametro). L'osservazione al binocolo risulta la più gratificante; al telescopio l'oggetto si fa infatti rarefatto e diventa difficile apprezzarne la bellezza.

La stella più brillante della Poppa è Naos (nome che in greco significa proprio “nave”), e il fatto che questa sia anche contrassegnata come zeta Puppis fa capire come un tempo fosse considerata una semplice comprimaria di una grande costellazione dove molte altre stelle, a partire da Canopo, le erano superiori in luminosità. Vale la pena di cercarla perché è anche una delle più vicine supergiganti (1000 anni luce) del rarissimo tipo spettrale O; una stella enorme e caldissima (più di 40 000 K la temperatura superficiale), con una luminosità intrinseca di oltre 25 mila volte quella del Sole. Se venisse collocata alla distanza standard di 10 parsec (poco meno di 33 anni luce) sarebbe di magnitudo –6, ossia quattro volte più brillante di Venere al suo massimo!

Pio & Bubble Boy – Coelum n.179 – 2014

pioebubble_Mar
pioebubble_Mar
Pio & Bubble Boy - Mario Frassati - Coelum 179

Questa Vignetta è pubblicata su Coelum n.179 – 2014. Leggi il Sommario. Guarda le altre vignette di Pio&Bubble Boy

Gruppo Astrofili DEEP SPACE

0

28.02: “Il Tempo da Sant’Agostino a Einstein: viaggio nei misteri della quarta dimensione” di Luigi Foschini.

Per info: 0341.367584 – www.deepspace.it

Associazione Ligure Astrofili Polaris

0

28.02: “AstroNews 2013-2014: …tutta roba fresca di giornata!” Mauro Maestripieri, Marco Margiocco.

Per info: cell. 346.2402066 – info@astropolaris.it
www.astropolaris.it

×
ISCRIVITI ALLA NEWSLETTER

There was an error while trying to send your request. Please try again.

Autorizzo Coelum Astronomia a contattarmi via e-mail utilizzando le informazioni che ho fornito in questo modulo sia per fini informativi (notizie e aggiornamenti) che per comunicarmi iniziative di marketing.