Un’anomalia termica lontana dalle aurore gioviane ha sorpreso gli astronomi. Uno studio, guidato da Henrik Melin dell’Università di Leicester, rivela che un’improvvisa compressione del campo magnetico di Giove, provocata dal vento solare, ha generato un gigantesco riscaldamento atmosferico a latitudini inaspettate.
Il pianeta Giove è noto per le sue spettacolari aurore polari, generate dall’interazione tra il suo potente campo magnetico e particelle cariche provenienti sia dal Sole che dalla luna Io. Ma nel gennaio 2017, osservazioni effettuate con il telescopio Keck II alle Hawaii hanno rilevato qualcosa di inedito: una vasta regione atmosferica, lontana dai poli, con temperature superiori di 200 K rispetto alla media, in un’area di ben 180° di longitudine. L’anomalia, visibile solo per poche ore, ha sollevato interrogativi sulla sua origine.
Il team di ricercatori, tra cui anche membri della NASA e dell’Università del Colorado, ha utilizzato dati raccolti dalla sonda Juno e modelli avanzati del vento solare per ricostruire il contesto. Proprio in quelle ore, Giove aveva subito un impatto con un flusso solare ad alta velocità. Questo evento aveva compresso la magnetosfera, spingendo la sonda Juno fuori da essa per alcune ore e innescando, secondo gli autori, un processo simile a quanto avviene sulla Terra con le “Large-Scale Traveling Ionospheric Disturbances” (LSTIDs).4

(In alto): immagine di Giove ottenuta con una camera di guida filtrata tra 2,134 e 4,228 μm, utilizzata per indicare la posizione della fenditura spettrale rispetto al pianeta. Durante tutta la sessione osservativa, la fenditura è stata mantenuta fissa in corrispondenza del mezzogiorno locale gioviano. Le regioni luminose nell’immagine corrispondono principalmente alla luce solare riflessa dai banchi di nubi di ammoniaca e dalle foschie polari. In alto a sinistra si può anche distinguere il satellite Europa.
(In basso): immagine spettrale di Giove, suddivisa in due ordini spettrali, che mostra la radianza spettrale in funzione della lunghezza d’onda e della latitudine planetocentrica. Il metano assorbe fortemente la luce solare alle lunghezze d’onda più corte (a sinistra), mentre alle lunghezze d’onda più lunghe (a destra) prevale la luce solare riflessa. Le righe di emissione di H₃⁺ sono visibili in entrambi gli ordini spettrali e si estendono verticalmente dal polo nord (e oltre il bordo superiore del pianeta) fino a poco a sud dell’equatore.
“Questa ondata di calore potrebbe essere stata trasportata verso l’equatore da forti venti atmosferici, generati da un’improvvisa intensificazione dell’aurora,” scrivono gli autori, fra cui anche Tom Stallard e Henrik Melin dell’Università di Leicester. “Oppure potrebbe essere stata causata da un meccanismo energetico ancora sconosciuto, legato alla magnetosfera interna.”
Utilizzando osservazioni spettroscopiche infrarosse e sofisticate simulazioni, il team ha calcolato che l’anomalia si è spostata verso sud con velocità comprese tra 0,46 e 2,02 km/s, valori sorprendentemente simili a quelli osservati sulla Terra durante eventi aurorali estremi. La temperatura raggiunta in alcuni punti ha toccato i 950 K, un valore di norma riservato alle regioni aurorali polari.
Ma c’è di più: la posizione della regione calda non coincideva con aree di alta densità di H₃⁺ (l’idronio ionico), un tipico indicatore di riscaldamento da particelle precipitate, il che suggerisce un’origine dinamica piuttosto che locale.
I modelli solari HUXt e Tao-MHD, insieme ai dati in situ della sonda Juno (equipaggiata con lo strumento Waves), confermano che l’ambiente spaziale di Giove stava vivendo un momento di forte turbolenza. “L’emissione radio tipica del plasma magnetosferico era scomparsa e poi riapparsa, un chiaro segnale che la sonda era temporaneamente uscita dalla magnetosfera, schiacciata dal vento solare,” riportano gli autori.
Questa scoperta ha importanti implicazioni: l’influenza del vento solare si estende ben oltre le regioni aurorali, modificando l’intero bilancio energetico dell’alta atmosfera di Giove. Una dinamica che, finora, era stata considerata secondaria rispetto ai processi interni del pianeta.

Pannello a: mostra le temperature in funzione della longitudine e della latitudine, con l’ovale principale dell’aurora evidenziato in nero. Questo ovale rappresenta le regioni collegate magneticamente lungo le linee di campo fino a una distanza di 25 raggi gioviani nel piano equatoriale del pianeta.
Pannello b: rappresenta una porzione del pannello a, in proiezione equirettangolare, e include l’adattamento al centro della struttura calda. Qui, la struttura è collegata ai punti dell’aurora a essa più vicini (seguendo il percorso più breve sulla superficie sferica, o “cerchio massimo”) tramite frecce nere. Sono inoltre sovrapposte le impronte magnetiche relative a distanze equatoriali di 5,9 raggi gioviani (l’orbita di Io) e 2,0 raggi gioviani.
Pannello c: indica a quali regioni della magnetosfera equatoriale corrisponde la struttura calda, in termini di distanza dal centro del pianeta espressa in raggi gioviani (noti anche come L-shell).
Pannello d: mostra la distanza tra la struttura calda e l’ovale aurorale, utilizzata per calcolare la velocità del movimento. Le velocità sono ottenute dividendo la variazione di distanza per l’intervallo temporale tra i punti di osservazione. In totale sono state determinate sei velocità, ciascuna calcolata da coppie di punti distanziati da un dato intermedio. Un esempio è riportato nel corpo del testo, con dettagli sul modello magnetico utilizzato.
Le barre d’errore nei pannelli b e d derivano dalle incertezze nel puntamento del telescopio e dalle condizioni atmosferiche durante le osservazioni. Il pannello b è riportato nuovamente nella Figura S4 (nei materiali supplementari) per offrire una visione libera da annotazioni della struttura calda.
Il fenomeno osservato rappresenta la prima prova diretta di un meccanismo globale di trasporto termico atmosferico scatenato da un evento solare, e apre la strada a nuove indagini sia teoriche che osservazionali. In futuro, studi continui su più rotazioni gioviane potranno stabilire se questi eventi sono isolati o se rappresentano un elemento ricorrente del comportamento atmosferico di Giove.
Informazioni sullo studio
Lo studio è stato condotto da Henrik Melin (University of Leicester), Tom Stallard e colleghi affiliati alla NASA, University of Colorado Boulder e Southwest Research Institute. I dati provengono dal telescopio Keck II e dalla missione Juno.
Fonte: Geophysical Research Letters
