Un programma di citizen science ha portato alla scoperta di 34 nuovi candidati “blue blobs”, una rara popolazione di sistemi stellari isolati nel cluster di galassie della Vergine.
Nel vasto e dinamico ambiente del Virgo Cluster – uno dei più vicini e studiati agglomerati di galassie – un nuovo studio guidato da Michael G. Jones (University of Arizona) ha identificato 34 nuovi oggetti candidati appartenenti alla categoria dei cosiddetti “blue blobs”. Di questi, 13 presentano caratteristiche ad alta affidabilità, con sei già confermati tramite spettroscopia ottica grazie al telescopio Hobby–Eberly Telescope (HET).
I blue blobs sono nubi di formazione stellare isolate, estremamente povere di massa (meno di 100.000 masse solari), ma inaspettatamente ricche di metalli, immerse nel mezzo caldo intra-ammasso. Sono tra i prodotti più estremi del fenomeno del ram pressure stripping, un processo in cui il gas di una galassia in caduta in un cluster viene strappato via dall’interazione con il mezzo intra-ammasso (ICM). Il gas così rimosso, se sufficientemente denso, può collassare e dare origine a nuove stelle lontano dalla galassia madre.
“Le proprietà di questi oggetti sono incompatibili con quelle delle galassie a bassa massa” spiega Jones. “Sono troppo giovani, troppo isolati, e troppo ricchi in metalli per essere normali galassie nane.”
Una scoperta resa possibile dalla scienza partecipativa
Per identificare questi oggetti, il team ha lanciato un progetto su Zooniverse, coinvolgendo centinaia di volontari nella classificazione visiva di oltre 150.000 immagini ottiche e ultraviolette provenienti da tre grandi survey:
- Next Generation Virgo Cluster Survey (NGVS) con il telescopio CFHT,
- Dark Energy Camera Legacy Survey (DECaLS),
- e dati UV del telescopio spaziale GALEX.
I partecipanti dovevano cercare strutture irregolari, isolate e molto blu, accompagnate da emissione ultravioletta: segnali tipici di formazione stellare recente. Il contributo umano si è rivelato cruciale, dato che i blue blobs hanno morfologie irregolari e bassa luminosità superficiale, caratteristiche che rendono difficile il loro riconoscimento da parte di algoritmi automatici.
Conferme spettroscopiche e proprietà sorprendenti
I sei blue blobs confermati presentano velocità radiali coerenti con l’appartenenza al cluster della Vergine e abbondanze metalliche elevate, incompatibili con galassie nane formatesi in isolamento. Queste caratteristiche confermano l’ipotesi che siano nati da gas pre-enriched, cioè gas già arricchito da precedenti cicli stellari, e strappato a galassie più grandi.
Inoltre, alcuni blue blobs sembrano essere le controparti ottiche di precedenti rilevamenti di nubi di idrogeno neutro (H I) privi di emissione ottica, noti come “dark clouds”. Questo collegamento è stato rafforzato dalla somiglianza delle velocità Hα dei blue blobs e delle loro rispettive nubi H I.
Una popolazione distribuita lungo i filamenti del cluster
La distribuzione spaziale dei nuovi candidati mostra che tendono a formarsi lungo i filamenti galattici che si estendono verso il centro del cluster, ma evitano le zone centrali più dense e calde. Questo suggerisce che la formazione di blue blobs sia favorita da condizioni ambientali intermedie: abbastanza dense da innescare il ram pressure stripping, ma non così estreme da distruggere il gas strappato prima che possa formare stelle.
“È significativo che questi oggetti non sembrino provenire da galassie appena entrate nel cluster,” sottolinea Jones. “Molti si trovano in regioni tipiche di membri già presenti da tempo, indicando che il stripping può agire anche dopo diverse orbite.”
Una nuova classe di oggetti, forse un nuovo paradigma
Nel complesso, questi risultati rafforzano l’idea che i blue blobs siano i cugini estremi delle galassie jellyfish: nubi stellari nate dal gas strappato, ma che si sono completamente staccate dal loro progenitore galattico. La loro giovinezza, composizione chimica e isolamento pongono sfide significative ai modelli attuali di evoluzione galattica nei cluster.
Ulteriori conferme spettroscopiche sono in corso con HET e il radiotelescopio GBT, ma per comprendere appieno la storia evolutiva di questi oggetti sarà necessario studiarne le popolazioni stellari risolte, un compito che solo il James Webb Space Telescope (JWST) potrà affrontare.
Autore principale: Michael G. Jones – University of Arizona
Collaborazioni: Hobby–Eberly Telescope, Zooniverse, GALEX, NGVS
Strumenti principali: HET LRS2, ALFALFA, CFHT MegaCam, GALEX
Fonte: The Astrophysics Journal