A cura della rete CARMELO
(Cheap Amatorial Radio Meteor Echoes LOgger)
Mariasole Maglione (GAV, Gruppo Astrofili Vicentini)
Lorenzo Barbieri (Rete CARMELO e AAB, Associazione Astrofili Bolognesi)
Indice dei contenuti
Bollettino di Ottobre
Introduzione
Ottobre è il mese delle Orionidi (ORI). La rete CARMELO ha registrato un moderato aumento dell’attività meteorica tra il 21 e il 22 ottobre, e un ulteriore aumento tra il 26 e il 27 ottobre.
I dati del mese di Ottobre
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di ottobre.

Le Orionidi
Le Orionidi (ORI) sono uno sciame meteorico annuale originato dalla cometa 1P/Halley. La Terra incontra ogni anno il flusso di particelle lasciate dalla cometa lungo la sua orbita, dando origine allo sciame attivo tra inizio ottobre e i primi giorni di novembre. Il picco di attività si registra di solito intorno al 22 ottobre, con uno ZHR che può arrivare a circa 25 meteore all’ora, in condizioni favorevoli. Queste meteore sono piuttosto veloci: entrano nell’atmosfera terrestre a circa 67.5 km/s, producendo tracce rapide e sottili, a volte con meteore particolarmente luminose.
Le Orionidi hanno mostrato in passato anche episodi di incremento improvviso dell’attività (outburst). In particolare, nel 1993 si registrò un outburst inatteso nelle notti tra il 16 e il 18 ottobre, quindi qualche giorno prima del picco atteso. In quelle notti furono osservate anche meteore molto brillanti, in corrispondenza di longitudini solari intorno a 202°–205°. L’anno successivo il fenomeno non si ripeté (1).
Il radiante delle Orionidi si trova nella costellazione di Orione, vicino alla stella Betelgeuse. Questo significa che le meteore sembrano provenire da questa area del cielo. Per gli osservatori dell’emisfero settentrionale, come la rete CARMELO, il radiante sorge a tarda sera e raggiunge la massima elevazione nelle ore subito prima dell’alba. In fig.2, al tasso orario di segnali ricevuti nei giorni in cui è stato registrato un aumento del numero di meteore, compatibile con l’attività delle Orionidi, è sovrapposta una linea blu che indica l’elevazione del radiante.

Quest’anno, la rete CARMELO ha rilevato un aumento apprezzabile nel tasso orario di eventi rilevati tra la longitudine solare 208° e 209°, quindi tra il 21 e il 22 ottobre. Tuttavia, proprio in corrispondenza del previsto passaggio della Terra nel massimo dello sciame delle Orionidi, il 22 ottobre, il radar Graves è stato spento per circa 4 ore.
Abbiamo notato anche un ulteriore aumento tra la longitudine solare 212° e 214°, ovvero tra il 26 e il 27 ottobre (vedi sempre fig.2).
Bibliografia:
1) P. Jenniskens (2006): “Meteor showers and their parent comets”. Cambridge University Press, pag. 301-302
Bollettino di Settembre
Introduzione
A settembre l’attività meteorica rilevata dalla rete CARMELO è stata moderata e non ha permesso di evidenziare picchi di attività di determinati sciami. Abbiamo perciò scelto di sfruttare l’occasione per una riflessione ragionata sulla possibilità di valutare, almeno qualitativamente, il comportamento degli sciami meteorici a partire dai dati della rete.
I dati del mese di Settembre
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di settembre.

Nel mese di settembre l’attività meteorica registrata dalla rete CARMELO è stata più o meno costante. Non si sono verificati picchi di attività associabili a qualche sciame in particolare.
Il comportamento degli sciami
L’osservazione delle meteore tramite radio meteor scatter in ambito amatoriale, come abbiamo già visto, soffre la grave limitazione di non poter definire le orbite. Di conseguenza è impossibile classificare le singole meteore.
All’opposto, come è noto, questo tipo di osservazione prescinde dalle condizioni meteo e dalla presenza o meno del Sole o della Luna. Può quindi essere di supporto nella valutazione, almeno qualitativa, del comportamento degli sciami. Proviamo quindi a ipotizzare un utilizzo dei dati di CARMELO con questo obiettivo.
Ipotizziamo che uno sciame meteorico, al momento della sua formazione, abbia una struttura omogenea, cioè che le particelle che lo compongono siano uniformemente distribuite all’interno del cilindro venutosi a creare dalla liberazione di materia dal corpo progenitore.
Come è noto, col passare del tempo questa omogeneità viene a perdersi a causa di alcune forze perturbanti. La più nota di queste è quella che va sotto il nome di effetto di Poynting Robertson. Questo effetto si spiega con il fatto che le particelle che vengono riscaldate dal Sole tendono a raffreddarsi riemettendo la stessa energia nell’infrarosso, in tutte le direzioni.
Prendendo in esame il comportamento medio di tutte le particelle, quindi attribuendo loro una simmetria sferica, se la particella fosse ferma, la radiazione emessa sarebbe la stessa in tutte le direzioni, con uguale quantità e uguale frequenza.
Tutte le particelle invece viaggiano nel Sistema Solare, e lo fanno a una velocità di circa 30 km/s, di conseguenza nella direzione di marcia la frequenza della radiazione emessa è più alta di quella emessa nella direzione inversa, a causa dell’effetto Doppler. (1)
Secondo la legge di Plank, la famosa legge alla base della meccanica quantistica:

Dove e è l’energia, h la costante di Plank e 𝜈 la frequenza.
L’energia rilasciata nella direzione di marcia è maggiore di quella rilasciata nella direzione opposta: ne consegue quindi che la particella subisce un’azione frenante. Tale azione frenante non sarà uguale per tutte le particelle, ma sarà proporzionale alla loro capacità di ricevere e riemettere calore e quindi, tra le altre grandezze, alla loro massa.
Più un corpo viene rallentato più la sua orbita si “stringe”, cioè gli assi dell’orbita divengono minori. Ne consegue quindi che particelle diverse vengono indotte dall’effetto Poynting Robertson a differenziare le loro orbite in ragione della loro massa (vedi fig. 2).

Lo sciame, con il passare degli anni viene a perdere sempre più la sua simmetria. Ci sono due parametri, derivati dall’osservazione visuale, che descrivono analiticamente questo fenomeno:
• La densità del flusso meteorico (meteoric flux density).
• L’indice di massa (mass index).
La densità del flusso meteorico (meteoric flux density) si indica con Q(m0) ed è definita come la quantità di meteoroidi di massa m0 nell’unità di tempo, in una unità di area perpendicolare alla direzione del moto.
Per esempio, per m0 = 10 mg potremo avere Q(m0) = 0.001 miliardesimi al metro quadro al secondo.
L’indice di massa (mass index) è l’esponente (s) in una distribuzione di potenza delle masse dei meteoroidi, un metodo per modellare il numero di meteoroidi di diverse dimensioni esistenti. La formula è:
dN/dM = N₀(M/M*)⁻ˢ
dove dN è il numero di meteoroidi in un intervallo di massa dM, N₀ è una costante, M* è una massa caratteristica e s è l’indice di massa. (2)
Nel grafico che segue è riportato il confronto tra Q(m0) ed s per uno sciame generico: sulle ascisse la longitudine solare, cioè il tempo.

La differenza tra il massimo di Q(m0) e il massimo di s rappresenta il lasso di tempo che intercorre tra il massimo della densità di particelle e il massimo di particelle di maggior massa, ed è proporzionale all’età dello sciame: quanto più lo sciame è giovane, tanto più la lunghezza della freccia rossa in fig. 3 tende a zero.
A complicare le cose, occorre considerare l’inclinazione delle orbite, che cambia il modo in cui la Terra incontra lo sciame (vedi fig. 4).



Si tratta di uno sciame notoriamente “giovane”, ma già alla sua età uno sfasamento tra i due massimi è apprezzabile.
Ammettendo che queste considerazioni abbiano un fondamento scientifico nonostante le semplificazioni effettuate, potremmo anche spingerci a valutare un ordine di grandezza delle distanze in gioco.
Considerando che
s=v*t
e che la velocità v della Terra nel Sistema Solare è di circa 30 Km/s, in 9 ore lo spazio percorso sarà di:
s=30*9*60*60 = 972000 Km
Ovvero, lo scivolamento verso un’orbita interna da parte delle particelle più massicce ha comportato una distanza tra le orbite dell’ordine di grandezza di un milione di chilometri.
L’attendibilità del confronto che qui proponiamo andrà verificata in futuro con altri sciami.
Bibliografia:
1) P. Jenniskens (2006): “Meteor showers and their parent comets”. Cambridge University Press
2) O. Belkovich, D. Pajovic, J M. Wislez (2005): “Basic elements of meteor stream theory”. Proceedings of the radio meteor school 2005, p. 17 e seg.
3) O. Belkovich, Cis Verbeeck (2005): “The physics of meteoroid ablation and the formation of ionized meteor trails”. Proceedings of the radio meteor school 2005, p. 21 e seg.
Bollettino di Agosto
Introduzione
Agosto è il mese delle Perseidi. Quest’anno, nonostante lo sciame sia come sempre molto sparso, un picco di maggiore attività meteorica è stato registrato nella notte del 13 agosto.
I dati del mese di Agosto
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di agosto.

Le Perseidi
Le Perseidi (PER) sono uno degli sciami meteorici più noti e spettacolari dell’anno, attivo dalla fine di luglio fino a quasi la fine di agosto. Il massimo di attività si registra attorno alla metà del mese di agosto, ma lo sciame si distingue per la sua durata piuttosto estesa: le meteore possono essere osservate per diverse settimane, rendendolo un fenomeno diffuso e non circoscritto a una sola notte.
Le Perseidi sono originate dai detriti lasciati dalla cometa Swift-Tuttle, che la Terra incontra ogni anno in questo periodo. Il radiante si trova nella costellazione di Perseo, da cui lo sciame prende il nome. Le meteore sono particolarmente veloci, con una velocità d’ingresso in atmosfera di circa 61 km/s, e producono scie luminose brillanti e persistenti, spesso accompagnate da tracce di ionizzazione ben rilevabili anche tramite osservazioni radio.
Quest’anno, la rete CARMELO ha registrato la maggiore attività dello sciame nella notte del 13 agosto, per una durata di circa 5-6 ore, tra la longitudine solare 140.1° e 140.4°, come in fig. 2.

Anche le osservazioni visuali dell’International Meteor Organization (IMO), in fig. 3, e, tramite le telecamere, del Global Meteor Network (GMN), in fig. 4, mostrano un picco di attività dello sciame in corrispondenza del 13 agosto (1), (2).


Tornando ai nostri dati radio notiamo un aumento in corrispondenza delle ore 8-9 UT del 12 agosto, sia nel grafico della potenza ricevuta (in fig. 5) che nel grafico della durata degli echi meteorici (in fig. 6).
Sappiamo che la durata di un’eco radio dipende dal tempo impiegato dalla meteora a dissolversi (saturazione del cilindro): quanto maggiore è il numero degli atomi ionizzati, tanto più tempo dura il processo di deionizzazione. Il numero degli atomi ionizzati è anche proporzionale all’energia cinetica dei corpi impattanti contro le prime molecole della ionosfera: più lo scontro è energetico, più atomi si disintegrano, e quindi più la radiometeora è densa.
Dato che l’energia cinetica è data da:
Ec = mv2/2
e dato che tutte le meteore appartenenti a uno stesso sciame viaggiano alla stessa velocità v, se ne deduce che l’unico parametro che varia è m, cioè la massa.
Quindi possiamo ipotizzare che in corrispondenza delle 8-9 UT del 12 agosto, alla longitudine solare 139.57° si sia misurato un aumento di energia cinetica, il che ci fa supporre che probabilmente sono entrati in atmosfera meteoroidi di massa maggiore rispetto alla media delle altre Perseidi, e con un anticipo di una trentina di ore rispetto al massimo del tasso orario.


Bollettino di Luglio
Introduzione
Nella prima metà del mese di luglio l’attività meteorica è stata moderata, principalmente dominata dallo sciame meteorico delle Psi Cassiopeidi (187 PCA).
I dati del mese di Luglio
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di luglio.

Le Psi Cassiopeidi
Le Psi Cassiopeidi (187 PCA) sono uno sciame meteorico attivo nella prima metà di luglio, con picco massimo attorno alla metà del mese. Si tratta di uno sciame minore, poco visibile a occhio nudo ma rilevabile tramite sistemi di osservazione radio, grazie alla velocità e alla frequenza delle meteore, specie nelle ore crepuscolari. Non è associato ad alcun corpo progenitore noto (1).
Il radiante dello sciame è localizzato nella costellazione di Cassiopea, vicino alla stella Psi Cassiopeiae, da cui prende il nome. Le Psi Cassiopeidi sono rapide, con una velocità d’ingresso in atmosfera di circa 58 km/s, e producono echi radio intensi e di breve durata.
Nel 2025, lo sciame delle Psi Cassiopeidi ha mostrato un’attività crescente nella prima metà del mese di luglio, e la rete CARMELO ha rilevato un tasso orario compatibile con il tracciamento dello sciame (fig. 2).

Bibliografia:
(1) Peter Jenniskens et al. (2006): Meteor showers and their parent comets. Cambridge University Press
Bollettino di Giugno
Introduzione
A giugno la rete CARMELO ha registrato un’attività meteorica in crescente intensità, e nella prima metà del mese ha rilevato un’attività compatibile con lo sciame diurno delle Arietidi (171 ARI).
I dati del mese di Giugno
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di giugno.

Le Arietidi
Le Arietidi (171 ARI) sono uno sciame meteorico attivo da metà maggio a metà giugno. Si tratta del più intenso sciame meteorico diurno (daytime shower) dell’anno: il suo massimo avviene quando il Sole è già alto nel cielo, rendendone l’osservazione visuale estremamente difficile, con meno di una meteora visibile all’ora. Le meteore delle Arietidi sono tuttavia ben rilevabili con strumentazione radio.
Il radiante dello sciame si trova nella costellazione dell’Ariete, in una posizione circa 4 gradi a sud-est della stella 41 Arietis. Le meteore sono generalmente rapide, con una velocità d’ingresso in atmosfera di circa 42 km/s, corrispondente a una velocità media rispetto ad altri sciami, non alta (1).
Nel 2025, lo sciame delle Arietidi ha mostrato una attività crescente tra il 3 e il 13 giugno, e anche la rete CARMELO ha rilevato un tasso orario compatibile con un picco giornaliero dello sciame tra le 11:00 e le 12:00 UT (fig. 2).

Spegnimento del radar Graves
Dalla fig. 1 che mostra l’andamento del tasso orario di meteore rilevate dalla rete CARMELO salta all’occhio l’interruzione dell’11 giugno, tra le 7:00 UT e le 10:00 UT, ovvero tra le longitudini solari 80.28° e 80.40° (vedi fig. 3). Essa corrisponde a uno spegnimento del radar Graves in Francia, probabilmente causata da una manutenzione della stazione.

Durante lo spegnimento, durato circa tre ore, i ricevitori della rete CARMELO hanno registrato soltanto 4 eventi, tutti chiaramente identificabili come falsi positivi. In condizioni normali, nello stesso intervallo temporale, il sistema registra in media oltre 1000 eventi. Questo confronto porta a una considerazione interessante: se in assenza del segnale radar riceviamo solo 4 eventi spuri, significa che, in condizioni standard, circa il 99.6% delle registrazioni sono effettivamente meteore. Un risultato che conferma l’affidabilità del sistema di rilevamento automatico di CARMELO.
Bibliografia:
- 1Robert Lunsford (2025): Meteor Activity Outlook for 14-20 June 2025, eMeteorNews
Bollettino di Maggio
Introduzione
Nel mese di maggio la rete CARMELO non ha rilevato un’attività meteorica particolarmente intensa. All’inizio del mese si è verificato un picco, anche se non molto pronunciato, dello sciame delle Eta Aquaridi (ETA), nella notte tra il 5 e il 6 maggio. Segnaliamo inoltre il rilevamento di un outburst meteorico probabilmente legato alla cometa 73P/Schwassmann–Wachmann nei primi giorni di giugno.
I dati del mese di Maggio
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di maggio.

Le Eta Aquaridi
Le Eta Aquaridi (ETA) sono uno sciame meteorico attivo ogni anno tra metà aprile e fine maggio, con un picco di visibilità attorno al 6 maggio. Anche se meno appariscenti rispetto a sciami più noti, le Eta Aquaridi rivestono una certa importanza particolare per la loro origine: i frammenti che le compongono provengono dalla celebre cometa di Halley, la stessa che dà origine anche alle Orionidi di ottobre (1).
Il radiante dello sciame si trova nella costellazione dell’Acquario, nei pressi della stella Eta Aquarii, da cui prende il nome. Nelle nostre latitudini questo punto sorge poco prima dell’alba, intorno alle 3:30, rendendo le ultime ore della notte il momento più adatto per l’osservazione e la rilevazione. A causa della posizione bassa del radiante sull’orizzonte, il numero di meteore visibili in Italia è generalmente limitato a circa 30–40 l’ora. Nelle regioni australi, dove il radiante si alza molto di più sull’orizzonte, lo sciame offre invece uno spettacolo ben più intenso, con tassi orari allo zenit (ZHR) che possono superare le 50–60 meteore all’ora.
Le Eta Aquaridi si distinguono anche per l’alta velocità delle meteore, che possono raggiungere oltre 66 km/s. Questo rende le loro tracce nel cielo particolarmente luminose e persistenti, con scie che talvolta permangono per diversi secondi.
Nel 2025, il picco di attività dello sciame era atteso nella notte tra il 5 e il 6 maggio. La rete CARMELO ha registrato un’attività moderata, in particolare tra le 2:00 e le 5:00 del mattino del 6 maggio, dove il massimo conteggio è stato di 204 eventi alle 2:00 quando ancora il radiante era sotto l’orizzonte, e successivamente, nell’intorno dell’alba, si è aggirato tra i 170 e i 180 eventi, tra le longitudini solari 45.55° e 45.67°.

Gli outburst del 31 maggio e 1 giugno
Il 6 giugno il Central Bureau for Astronomical Telegrams ha pubblicato il CBET 5561 (2), in cui si riportano due intensi outburst meteorici potenzialmente associati allo sciame minore delle Tau Herculids (61 TAH), generato da frammenti della cometa 73P/Schwassmann–Wachmann. Le osservazioni sono state condotte dal Croatian Meteor Network, che ha evidenziato due picchi ben distinti nel tasso orario di meteore, il secondo dei quali si è concluso bruscamente intorno alle 0:00 UTC del 2 giugno (longitudine solare 70.71°).
Quando una cometa come 73P/Schwassmann–Wachmann si frammenta (come è avvenuto in modo spettacolare nel 1995, con ulteriori rotture osservate nel 2006), rilascia materiale in grandi quantità: frammenti grandi e piccoli, polveri, e meteoroidi che vengono espulsi con velocità leggermente diverse tra loro. Queste differenze di velocità iniziale, anche minime, portano col tempo i meteoroidi a distribuirsi lungo l’orbita della cometa in modo non uniforme. Questo processo si chiama espansione differenziale: le particelle più veloci si allontanano in avanti, quelle più lente restano indietro. Dopo anni o decenni, queste “nuvole” si separano, generando pacchetti o filamenti che possono intersecare l’orbita terrestre in momenti precisi, dando luogo a outburst meteorici brevi ma intensi.
Nel caso della cometa 73P, diversi studi modellistici (3) hanno previsto che i detriti espulsi nei passaggi del 1995 e del 2006 — anni chiave per i suoi eventi di disgregazione — avrebbero potuto raggiungere la Terra intorno al 2022–2025. Il comportamento osservato in questi giorni è compatibile con l’arrivo di uno di questi filamenti di meteoroidi, confermando le simulazioni.
Osservando i dati della rete CARMELO, notiamo effettivamente un aumento del numero di echi meteorici rilevati tra l’1 e il 2 giugno, seguito da un improvviso calo proprio in corrispondenza alla longitudine solare 70.71° come indicato nel CBET.
Il radiante dello sciame associato alla cometa 73P transitava in meridiano proprio attorno a mezzanotte. Questo significa che al momento del calo non si era verificata alcuna variazione significativa nella geometria di osservazione. Il brusco calo dell’attività meteorica potrebbe quindi essere imputato alla cessazione del flusso di meteoroidi.

Bibliografia:
(1) A. Egal et al. (2020): Activity of the Eta-Aquariid and Orionid meteor showers, Astronomy & Astrophysics, Vol. 640
(2) Two meteor shower outbursts with potential connection to comet 73P, Central Bureau for Astronomical Telegrams, CBET 5561
(3) A Egal et al (2023): Modelling the 2022 τ-Herculid outburst, The Astrophysical Journal, Vol. 949
(4) L. Barbieri et al. (2024): What CARMELO can observe, eMeteorNews, vol. 9, no. 4, p. 241-248
Bollettino di Aprile
Introduzione
Aprile è il primo mese primaverile a mostrare degli sciami meteorici prevalenti, come quello antico delle Liridi (LYR). Il picco di attività per il 2025 era previsto tra il 21 e il 22 aprile. La rete CARMELO ha osservato un’attività moderata, con un lieve aumento nella notte tra il 22 e il 23 aprile, all’orario in cui la Lira si trovava circa in meridiano.
I dati del mese di Aprile
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di aprile.

Le Liridi
Le Liridi sono uno sciame meteorico attivo ogni anno in aprile, con un picco solitamente attorno al 22 del mese. Si tratta di uno degli sciami più antichi mai osservati, e dello sciame con la più lunga documentazione storica continua, con osservazioni che risalgono almeno al 687 a.C. (1).
Il corpo progenitore è stato identificato nel XIX secolo nella cometa C/1861 G1 (Thatcher), che impiega circa 415 anni per compiere un’orbita attorno al Sole. Le meteore di questo sciame hanno come radiante la costellazione della Lira, vicino alla brillante stella Vega. Le Liridi si distinguono per la loro velocità (circa 49 km/s) e per la possibilità di produrre scie brillanti e persistenti in cielo.
Solitamente si possono vedere attorno alle 15–20 meteore all’ora, ma occasionalmente si sono registrati picchi molto più elevati, che si riteneva fossero associati alla vicinanza della cometa madre alla Terra. Tuttavia, studi condotti alla fine del XX secolo hanno smentito questa correlazione diretta e indicano che gli outburst potrebbero essere invece legati a risonanze dinamiche o a dense regioni di materiale all’interno della scia cometaria (1).
Uno degli eventi più intensi fu l’outburst del 1803, con un tasso orario stimato di circa 860, che suscitò grande interesse astronomico. Uno più recente avvenne nel 1982, quando si registrarono fino a 90 meteore/h (2).
Nel 2025 il picco delle Liridi era atteso nelle ore notturne tra il 21 e il 22 aprile. La rete CARMELO ha registrato un’attività moderata tra il 21 e il 23 aprile, con un tasso orario di rilevazioni maggiori il 23, e un picco massimo alle 01:00 UT del 23 aprile, alla longitudine solare 32.80°.

La lacuna delle 6
Un’anomalia ricorrente nei dati raccolti dalla rete CARMELO, già riscontrata in passato con il sistema RAMBO, è il sistematico calo di meteore registrate attorno alle ore 6 locali in primavera, proprio quando ci si attenderebbe il massimo giornaliero teorico della frequenza meteorica.

Questo fenomeno, da noi definito “la lacuna delle 6” (vedi fig. 4), rappresenta un apparente paradosso osservativo che trova una spiegazione interessante.

Secondo il modello sviluppato da Giovanni Schiaparelli nel 1867 (3), la quantità di meteore osservata non è costante nel corso della giornata né dell’anno, ma segue delle variazioni regolari. Questo accade per via del movimento combinato della Terra, che ruota su sé stessa e orbita attorno al Sole. Anche se le meteore arrivassero da tutte le direzioni dello spazio in modo uniforme (cioè con una distribuzione isotropa dei radianti), l’effetto combinato tra la velocità della Terra e quella delle particelle meteoritiche crea un’illusione di concentrazione: le meteore sembrano arrivare in numero maggiore da una direzione specifica nel cielo, detta apice del moto terrestre (vedi fig.5).
Questo punto attraversa ogni giorno la volta celeste con un movimento analogo a quello del Sole e raggiunge il meridiano locale attorno alle 6 del mattino (tempo solare vero), generando così un massimo giornaliero della frequenza osservata. Simmetricamente, il minimo si verifica attorno alle 18.

Nel corso dell’anno, l’apice percorre l’eclittica, oscillando in declinazione: raggiunge valori massimi in primavera e minimi in autunno. Proprio in primavera, quindi, l’apice si trova a quote elevate (70–80° sull’orizzonte) durante il suo transito meridiano mattutino.

Le antenne utilizzate nella rete CARMELO sono caratterizzate da una discreta direttività, ed essendo fisse hanno un guadagno massimo concentrato in una specifica porzione di cielo. In particolare, la zona in cui l’antenna ha più guadagno nel ricevere i segnali radio riflessi dalle meteore è generalmente su declinazioni comprese tra 30° e +40° rispetto all’orizzonte. Questo comporta il fatto che le antenne della rete hanno meno sensibilità per meteore che si verificano ad altezze molto elevate nel cielo. E di conseguenza, quando l’apice del moto terrestre culmina in cielo ad alte declinazioni (vedi fig.7), come in primavera ed alle ore 6, le meteore che arrivano da quella direzione vengono intercettate con meno efficacia, con una conseguente riduzione delle rilevazioni proprio nel momento in cui, secondo la geometria, ci si attenderebbe il massimo di attività.
L’effetto risulta più evidente in primavera per due motivi principali:
- L’apice ha declinazioni più elevate.
- Il contributo meteorico è dominato dalle sporadiche, che rendono più “pulito” l’andamento sinusoidale.

Bibliografia:
- J. Martínez Usó et al. (2023): The Lyrids meteor shower: A historical perspective, Planetary and Space Science, Vol. 238
- Porubcan, V. & Cevolani, G. (1985): Unusual Display of the Lyrid Meteor Shower in 1982, Contributions of the Astronomical Observatory Skalnate Pleso, Vol.13, P.247
- Giovanni Schiapparelli (1987): Teoria astronomica delle stelle cadenti, Columbia University Press
Bollettino di Marzo
Introduzione
Marzo, come febbraio, è uno dei mesi meno attivi per quanto riguarda il passaggio di grossi sciami meteorici. In attesa del picco delle Liridi, previsto per la seconda metà di aprile, questo mese abbiamo concentrato la nostra attenzione su alcune considerazioni riguardanti il rumore radioelettrico.
I dati del mese di marzo
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di marzo.

Bollettino di Febbraio
Introduzione
Febbraio è uno dei mesi meno attivi dal punto di vista degli sciami meteorici. A differenza di gennaio, caratterizzato dal picco delle Quadrantidi, e di altri mesi con eventi più marcati, il periodo invernale centrale non presenta sciami di particolare rilievo. Tuttavia, l’osservazione radar permette di rilevare fenomeni altrimenti inosservabili, come i Daytime Showers, sciami meteorici il cui radiante è talmente vicino al Sole da non poter essere osservato con metodi ottici tradizionali. I dati raccolti dalla rete CARMELO nel mese di febbraio mostrano segnali compatibili con la presenza dello sciame delle χ-Capricornids (114 DXC).
I dati del mese di febbraio
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di febbraio.

I Daytime Showers
I Daytime Showers sono sciami meteorici i cui radianti si trovano molto vicini alla posizione del Sole nel cielo, rendendoli impossibili da osservare con strumenti ottici. A differenza degli sciami notturni, che presentano radianti ben visibili sopra l’orizzonte nelle ore serali o notturne, i Daytime Showers possono essere rilevati quasi esclusivamente attraverso osservazioni radar (1, 2). I loro radianti si trovano tipicamente tra i 20° e i 30° a ovest del Sole e vengono identificati grazie alle tecniche di radio-forward scatter e radar.
L’assenza di osservazioni ottiche implica che le informazioni su questi sciami sono spesso limitate. Mentre gli sciami notturni più noti, come le Perseidi o le Geminidi, hanno tassi di attività ben documentati e parametri ben definiti, molti Daytime Showers restano ancora poco studiati. Alcuni di essi mostrano attività più elevate e sono stati rilevati anche da reti di video osservazioni, mentre altri hanno un’attività così debole da rendere difficile una loro caratterizzazione precisa.
Le osservazioni radar degli ultimi decenni hanno comunque permesso di mappare i principali sciami diurni e di riconoscerne l’attività in periodi specifici dell’anno. Tra i più noti (2) vi sono quello delle Arietids (171 ARI), attivo tra maggio e giugno (3), e quello delle Sextantids (221 DSX), attivo tra settembre e ottobre. Nel periodo invernale, invece, l’attività dei Daytime Showers è generalmente più bassa, con sciami minori che mostrano un’attività difficilmente distinguibile dal rumore di fondo.
L’analisi di questi sciami è però importante per comprendere meglio la distribuzione e le caratteristiche della popolazione di meteoroidi nel Sistema Solare. Sebbene la loro attività sia spesso inferiore rispetto agli sciami principali, il loro studio permette di affinare i modelli di flusso meteorico e migliorare la nostra comprensione della dinamica delle particelle interplanetarie.
Le χ-Capricornids (114 DXC)
Le χ-Capricornids (114 DXC) sono uno sciame meteorico diurno attivo tra il 29 gennaio e il 28 febbraio, con un massimo previsto intorno al 13 febbraio alla longitudine solare 324.5° (2). Questo sciame è stato individuato grazie a osservazioni radar, poiché la vicinanza del suo radiante al Sole ne impedisce la rilevazione ottica tradizionale. L’attività dello sciame è classificata come bassa, con una distribuzione di meteoroidi caratterizzata da masse ridotte e velocità relativamente basse.
Il radiante delle χ-Capricornids sorge intorno alle 6:30 e tramonta intorno alle 14:30 (ora locale in Italia), limitando così la finestra temporale utile per la loro osservazione radar. A causa della loro bassa attività, non si registrano aumenti significativi nell’intensità dei segnali radio né variazioni rilevanti nella durata degli echi rilevati. Tuttavia, le osservazioni condotte nel corso degli anni hanno mostrato che questo sciame è compatibile con i dati raccolti, suggerendo che una frazione delle meteore rilevate possa effettivamente appartenere alle χ-Capricornids.
Studi precedenti, tra cui quelli riportati da Jürgen Rendtel nel 2014 (2), indicano che la popolazione di meteoroidi appartenente alle χ-Capricornids potrebbe derivare da una sorgente progenitrice non ancora identificata con certezza. Il fatto che le meteore osservate abbiano una scarsa intensità e brevi echi radio suggerisce che i frammenti siano il risultato di un processo di erosione prolungato, piuttosto che di un evento di frammentazione recente.
I dati raccolti dalla rete CARMELO nel mese di febbraio mostrano segnali compatibili con la presenza del χ-Capricornids. Tuttavia, l’assenza di picchi significativi di intensità del segnale e di variazioni nella durata degli echi suggerisce che lo sciame, se effettivamente il segnale è presente, sia composto prevalentemente da meteoroidi di piccola massa e bassa velocità.
In fig.2, il rettangolo grigio evidenzia la finestra di visibilità del radiante sopra l’orizzonte in Italia.
Analizzando il tasso orario di eventi e la potenza massima del segnale (Max Power), si nota un’assenza di fluttuazioni marcate attorno al massimo atteso. Questo comportamento conferma la bassa attività dello sciame, ma la compatibilità dei dati con le previsioni suggerisce comunque che una parte delle meteore rilevate possa effettivamente appartenere al χ-Capricornids.

Il Bollettino di Gennaio
Introduzione
Il mese di gennaio si apre con il picco delle Quadrantidi, che è lo sciame principale e dominante di tutto il mese, per il resto interessato solo dal passaggio di piogge minori. Il picco delle Quadrantidi si è verificato il 3 gennaio.
I dati del mese di gennaio
I grafici che seguono sono tratti da questa pagina: nelle ascisse è rappresentato il tempo, che è espresso in UT (Universal Time, Tempo Universale) oppure in longitudine solare (Solar Longitude) e le ordinate rappresentano il tasso orario (hourly rate), calcolato come il numero totale di eventi registrati dalla rete nell’ora diviso per il numero di ricevitori in funzione.
In fig.1, l’andamento dei segnali rilevati dai ricevitori per il mese di gennaio.

Le Quadrantidi
Tra le piogge meteoriche annuali, le Quadrantidi di gennaio si distinguono solitamente per la loro intensità, raggiungendo picchi di attività compresi tra 60 e 200 meteore all’ora. Nonostante ciò, rimangono meno conosciute rispetto ad altri sciami più celebri, come le Perseidi o le Geminidi. La loro minore notorietà è dovuta anche al brevissimo picco di attività, che dura circa 24 ore.
Il radiante delle Quadrantidi si trova nella costellazione di Boote, in una posizione piuttosto bassa nel cielo settentrionale, tra la testa del Dragone e il timone del Grande Carro. Il nome deriva da Quadrans Muralis, un’antica costellazione creata nel 1795 dall’astronomo francese Jérôme Lalande che includeva parti del Boote e del Dragone, e che non rientra nella lista delle 88 costellazioni stilata dall’Unione Astronomica Internazionale (IAU) nel 1922 e pubblicata nel 1930 (1).
L’origine di questo sciame resta un argomento dibattuto. Nel 2003, a seguito di una campagna osservativa sui corpi minori del Sistema Solare, l’astronomo Peter Jenniskens trovò un possibile corpo progenitore delle Quadrantidi nell’asteroide Near Earth (196256) 2003 EH1, un’ipotesi che le renderebbe uno dei pochi sciami meteorici derivanti da un asteroide e non da una cometa, analogamente alle Geminidi di dicembre (2). Da allora, 2003 E1 è considerato il corpo progenitore più probabile delle Quadrantidi. Esso potrebbe essere a sua volta un frammento della cometa C/1490 Y1 , che è stata osservata da astronomi cinesi, giapponesi e coreani poco più di 500 anni fa, nel 1490 (3).
Quest’anno, il picco massimo delle Quadrantidi era previsto il 3 gennaio alla longitudine solare 283.2°, corrispondente alle 17 UT. A quell’ora tuttavia il radiante dello sciame si trovava troppo basso sull’orizzonte per un corretto rilevamento. La rete CARMELO ha rilevato la massima attività alle 3 UT del 3 gennaio alla longitudine solare 286.6°, quando il tasso orario è stato di 224, e il radiante delle Quadrantidi era alto in cielo a Nord-Est (fig.2, con evidenziate con i tratti neri in basso le ore del giorno in cui il radiante si trovava sufficientemente in alto sopra l’orizzonte per l’osservazione).

La composizione delle Quadrantidi
Il grafico che segue in fig.3 è un confronto tra il tasso orario e la durata media degli echi meteorici nei giorni intorno al picco di attività delle Quadrantidi.
Si noti come i tre picchi del 3 e 4 gennaio nei due grafici siano molto diversi: il picco centrale, intorno alla longitudine solare 283° corrispondente alle ore 13 UT del 3 gennaio, ha echi molto più lunghi; la durata media raggiunge anche il mezzo secondo.

Questa osservazione ci dice molto sulla composizione di questo sciame. Infatti, la durata di un’eco radio dipende dal tempo impiegato dalla meteora a dissolversi: quanto maggiore è il numero degli atomi ionizzati (ioni ed elettroni liberi), tanto più tempo dura il processo di deionizzazione. Il numero degli atomi ionizzati, o densità del plasma, è proporzionale all’energia cinetica dei corpi impattanti contro le prime molecole della ionosfera: più lo scontro è energetico, più atomi si disintegrano, e quindi più la radiometeora è densa.
Noi sappiamo che l’energia cinetica è data da: E = mv*v/2
e sappiamo che tutte le meteore appartenenti a uno stesso sciame viaggiano tutte alla stessa velocità v. Se ne deduce quindi che l’unico parametro che varia è m, cioè la massa.
Il grafico mostra quindi che lo sciame delle Quadrantidi può essere descritto come un cilindro avente all’esterno un “guscio” di meteore più piccole, e all’interno un filamento di meteore più grosse. Questa caratteristica è tipica degli sciami relativamente giovani (in tempi astronomici, ovviamente). Col trascorrere del tempo, infatti, questa composizione tende a cambiare, sia per l’effetto delle interazioni gravitazionali con i pianeti maggiori del Sistema Solare, sia per la pressione della radiazione solare che tende a spostare le particelle più massicce verso l’esterno dello sciame, generando quindi una conformazione non più simmetrica.
Da notare come nel grafico in basso in fig.3, il picco di aumento di densità verso la longitudine solare 284° (tra il 4 e il 5 gennaio) non sia un falso positivo, o un errore del sistema. Era presente anche al passaggio delle Quadrantidi nel gennaio 2023 e rilevato da CARMELO (4).
La strumentazione
La rete CARMELO è costituita da ricevitori radio SDR. In essi un microprocessore (Raspberry) svolge simultaneamente tre funzioni:
1) Pilotando un dongle, sintonizza la frequenza su cui trasmette il trasmettitore e si sintonizza come una radio, campiona il segnale radioelettrico e tramite la FFT (Fast Fourier Trasform) misura frequenza e potenza ricevuta.
2) Analizzando il dato ricevuto per ogni pacchetto, individua gli echi meteorici e scarta falsi positivi e interferenze.
3) Compila un file contenente il log dell’evento e lo spedisce ad un server.
I dati sono tutti generati da un medesimo standard, e sono pertanto omogenei e confrontabili. Un singolo ricevitore può essere assemblato con pochi dispositivi il cui costo attuale complessivo è di circa 210 euro.
Per partecipare alla rete leggi le istruzioni a questa pagina.
La rete CARMELO
La rete è attualmente composta da 14 ricevitori di cui 13 funzionanti, dislocati in Italia, Regno Unito, Croazia e USA. I ricevitori europei sono sintonizzati sulla frequenza della stazione radar Graves in Francia, pari a 143.050 MHz. Partecipano alla rete:
• Lorenzo Barbieri, Budrio (BO) ITA
• Associazione Astrofili Bolognesi, Bologna ITA
• Associazione Astrofili Bolognesi, Medelana (BO) ITA
• Paolo Fontana, Castenaso (BO) ITA
• Paolo Fontana, Belluno (BL) ITA
• Associazione Astrofili Pisani, Orciatico (PI) ITA
• Gruppo Astrofili Persicetani, San Giovanni in Persiceto (BO) ITA
• Roberto Nesci, Foligno (PG) ITA
• MarSEC, Marana di Crespadoro (VI) ITA
• Gruppo Astrofili Vicentini, Arcugnano (VI) ITA
• Associazione Ravennate Astrofili Rheyta, Ravenna (RA) ITA
• Akademsko Astronomsko Društvo, Rijeka CRO
• Mike German a Hayfield, Derbyshire UK
• Mike Otte, Pearl City, Illinois USA
L’auspicio degli autori è che la rete possa espandersi sia quantitativamente che geograficamente, permettendo così la produzione di dati di miglior qualità.
Vuoi essere sempre aggiornato sul Cielo del Mese?














