Un nuovo tipo di correttore di dispersione atmosferica – ESCLUSIVA COELUM
Principi fisici, progettazione e verifiche sperimentali di un correttore a lamina ottica per ridurre la dispersione atmosferica nelle osservazioni ad alta risoluzione.

2341
0
8 min read 1.431 words 264 views

 

Le osservazioni astronomiche da terra sono inevitabilmente influenzate dall’atmosfera, che agisce come un prisma alterando la luce dei corpi celesti e causando dispersione cromatica, soprattutto per oggetti bassi sull’orizzonte. Negli ultimi anni, con l’avvento del digitale, sono comparsi dispositivi noti come ADC (Atmospheric Dispersion Corrector), capaci di compensare parzialmente questo effetto. L’articolo presenta un nuovo approccio, basato su una lamina ottica piano-parallela, semplice ed efficace, per correggere la dispersione atmosferica e migliorare le riprese in alta risoluzione.

È ben noto che le osservazioni astronomiche condotte da terra risentono inevitabilmente delle condizioni atmosferiche sovrastanti il sito.
Come qualcuno ha osservato, e come tutti gli astrofili sperimentano costantemente, si può ben dire che la parte peggiore di un telescopio è l’atmosfera che si comporta, di fatto, come un mezzo rifrangente, anteposto allo strumento di osservazione, alterando la luce che la attraversa secondo le usuali leggi dell’ottica geometrica e fisica.
Lo studio dei diversi aspetti del problema è stato da tempo ampiamente approfondito e dibattuto a livello professionale ed ha portato a diverse soluzioni tecnologiche altamente sofisticate.
In campo amatoriale è invece solo relativamente recente l’introduzione di dispositivi atti a mitigare gli effetti negativi dell’atmosfera, specie nelle osservazioni in alta risoluzione dopo l’avvento della rivoluzione digitale.
In questo ambito, negli ultimi anni è stata posta una particolare attenzione all’analisi degli effetti della dispersione spettrale atmosferica che ha portato alla comparsa sul mercato dei cosiddetti “correttori di dispersione atmosferica”, correntemente indicati con l’acronimo inglese ADC (Atmospheric Dispersion Corrector).
La loro funzione, in sintesi, è quella di compensare in qualche misura il cromatismo indotto dalla dispersione della luce che attraversa gli strati di atmosfera prima di giungere a terra. Va da sé (secondo le leggi della fisica ottica) che l’effetto disperdente è tanto maggiore quanto più spessi e densi sono gli strati di atmosfera attraversati, ovvero quanto più bassi sull’orizzonte si vengono a trovare i corpi celesti, specie se osservati in condizioni di elevata umidità dell’aria.
In questi casi l’atmosfera si comporta di fatto come un prisma, scomponendo la luce nelle sue componenti cromatiche essenziali, cosa che si traduce in uno sfalsamento verticale dei colori nelle immagini riprese a terra attraverso un qualsiasi dispositivo ottico.

Figura 1 – A sinistra, effetto della dispersione atmosferica in analogia con quella di un prisma [1]. A destra, immagine stellare affetta da dispersione [2].
Figura 2 – Dispersione atmosferica, in secondi d’arco, in funzione della distanza zenitale, in gradi, calcolata per il sito dell’osservatorio Keck a Mauna Kea. A riprova della non linearità dell’effetto, si noti come la dispersione, tra 3200 e 10000 Å, quasi raddoppi tra 60° e 70° dallo Zenith [3].

L’effetto, di per sé contenuto, diviene però particolarmente evidente nelle riprese attraverso un telescopio, per via dell’amplificazione dovuta all’ingrandimento, tanto da compromettere l’osservazione in alta risoluzione di Sole, Luna, pianeti e stelle doppie quando questi, nel loro moto apparente sulla volta celeste, si vengono a trovare ad una ridotta altezza sull’orizzonte.
Va comunque precisato che la dispersione si manifesta teoricamente nell’osservazione di corpi celesti a qualsiasi altezza sull’orizzonte (ad esclusione dello Zenith, dove la dispersione è nulla), con un effetto in prima approssimazione variabile linearmente solo entro una distanza zenitale di circa 30°.

Occorre anche sottolineare, cosa a volte non del tutto evidente, che l’effetto della dispersione atmosferica non dipende in alcun modo dalla correzione cromatica dello strumento in uso, rifrattore acromatico, apocromatico o riflettore che sia, ma esclusivamente dalle condizioni fisico-geometriche degli strati atmosferici attraversati dalla luce prima di giungere al telescopio. Naturalmente ciò non toglie che un qualsiasi strumento introdurrà a sua volta le aberrazioni ottiche residue proprie della configurazione adottata, ma questo avverrà a prescindere dalla dispersione atmosferica e si potrà notare, ad esempio, anche nell’osservazione a distanza ridotta di oggetti a terra.
Ciò detto, non è mia intenzione approfondire qui tutti gli aspetti teorico-pratici del funzionamento degli ADC, ottimamente trattati nella bibliografia che raccomando di esaminare [1] [2] [9], ma concentrarmi piuttosto sulle soluzioni ottiche e meccaniche adottabili praticamente per la compensazione della dispersione. In particolare, nel prosieguo descriverò una possibile soluzione, tuttora in via di sperimentazione, alternativa a quelle attualmente in commercio.
Dovrebbe a questo punto essere chiaro che il sistema ottico di un ADC deve consentire di variare la compensazione in funzione dell’altezza sull’orizzonte dell’oggetto osservato.
Questo comporta la necessità di variare il potere dispersivo del sistema ottico adottato nella sola direzione perpendicolare all’orizzonte, ovvero nella direzione in cui si manifesta la dispersione atmosferica.
Nel caso in cui il sistema disperdente sia costituito da uno o più prismi, tale variazione può essere realizzata per via ottica oppure meccanica, come pure da una combinazione delle due.
La variazione di tipo meccanico, valida in generale per tutti gli ADC prismatici, può essere ottenuta modificando la distanza che separa l’ADC dal piano focale del telescopio, parametro da cui dipende direttamente l’effetto di compensazione. Sul piano pratico si può ad esempio utilizzare un tubo estensibile elicoidale posto tra ADC e portaoculari, anche se questo richiederà la regolazione del fuoco ogni volta che si altera la distanza in questione.
Diversamente, la variazione di tipo ottico comporta un qualche movimento/sostituzione degli elementi ottici inseriti nell’ADC, con effetti trascurabili o, comunque, in genere limitati sul fuoco del telescopio, ma con una sensibile traslazione verticale dell’immagine sul piano focale.
Il sistema più semplice, utilizzato in alcuni dei primi ADC, è composto da un prisma ottico di forma isoscele con lo spigolo al vertice parallelo all’orizzonte, come illustrato in Fig. 3.
Per variare la compensazione era prevista una batteria di prismi con diversi angoli al vertice, da scegliersi di volta in volta in base alle necessità, come quelli in Fig. 4 con angoli compresi tra 2° e 20°.

Figura 3 - Principio di funzionamento di un prisma compensatore della dispersione atmosferica; schema rielaborato da [2].
Figura 3 – Principio di funzionamento di un prisma compensatore della dispersione atmosferica; schema rielaborato da [2].

Figura 4 - Serie di prismi con angoli al vertice progressivi tra 2° e 20° (Leitz).
Figura 4 – Serie di prismi con angoli al vertice progressivi tra 2° e 20° (Leitz).

Il sistema, per quanto efficace, non permetteva però una variazione continua della compensazione, ma solo a gradini (step), anche se, combinando un treno ottico con due prismi, era possibile ottenere una variazione di fatto sufficientemente precisa.
Per ovviare al problema si pensò quindi di utilizzare un sistema a due prismi retti, detti di Risley1, con angolo al vertice da 2° a 4°, ora universalmente adottato negli ADC commerciali, in cui la compensazione viene variata ruotando i prismi simmetricamente rispetto al piano verticale perpendicolare all’orizzonte passante per l’asse ottico del telescopio.
Orbene, questo sistema non è esente da complicazioni pratiche in quanto, specie nei dispositivi più economici (come lo ZWO, 150€), la rotazione dei due prismi è indipendente e la simmetricità dell’orientamento è affidata a comandi manuali con controllo “a vista” rispetto ad una scala graduata non sempre facilmente leggibile nelle condizioni osservative notturne (Fig. 5).

Figura 5 - Schema di funzionamento di un ADC con la rotazione di due prismi di Risley [1].
A sinistra compensazione minima (nulla), al centro massima, a destra modello economico ZWO.
Figura 5 – Schema di funzionamento di un ADC con la rotazione di due prismi di Risley [1].
A sinistra compensazione minima (nulla), al centro massima, a destra modello economico ZWO.

Per di più, il movimento di rotazione è piuttosto grossolano, in quanto non demoltiplicato, con conseguente rapida uscita dal campo di vista (specie se ad alto ingrandimento) dell’oggetto osservato, dovuta allo spostamento dei prismi. Va comunque segnalata la disponibilità di alcuni prodotti relativamente costosi (ad esempio quello della Pierro Astro mark 3, 500€) in cui il comando della rotazione dei prismi è affidato ad una singola manopola che agisce simmetricamente tramite un meccanismo interno.
Infine, l’apertura utile degli ADC in commercio è generalmente limitata a 20-24mm, con l’eccezione di alcuni prodotti particolarmente costosi (5000ϵ) che possono arrivare a 28-30mm (APM). Questo aspetto, di per sé non molto rilevante per le osservazioni planetarie, può invece rivelarsi decisivo nelle riprese del disco lunare o solare completo con strumenti di lunga focale.

Figura 6 – 3 modelli ADC evoluti: a sn APM Professional con apertura di 28mm, al centro e a ds i Pierro Astro mark2, con due leve, e mark3, con comando unico, entrambi con apertura di 24mm.
Figura 6 – 3 modelli ADC evoluti: a sn APM Professional con apertura di 28mm, al centro e a ds i Pierro Astro mark2, con due leve, e mark3, con comando unico, entrambi con apertura di 24mm.

A fronte delle caratteristiche e limitazioni dei prodotti commerciali, mi sono quindi chiesto se per un ADC fosse possibile adottare un sistema ottico alternativo che, oltre ad essere semplice ed efficace, fosse soprattutto operativamente conveniente nell’utilizzo pratico.
Dopo alcune riflessioni, ho pensato di approfondire le proprietà disperdenti di una lamina ottica piano parallela di un certo spessore, per verificare se questa potesse fungere, da sola, da elemento disperdente in un ADC. Esaminiamo quindi in dettaglio le proprietà ottico-geometriche di un simile elemento.

Per il seguito dell’articolo con i passaggi matematici, i grafici e le tabelle dei risultati si rimanda alla lettura dell’impaginato disponibile per gli abbonati qui https://www.coelum.com/coelum-digitale/coelum-astronomia-278-i-2026-digitale


 

Articolo precedenteA Scheggia il Convegno Nazionale di Didattica dell’Astronomia
Articolo successivoPerché 1 è diverso da 1.000000